

Georgia Dairy Smart Roadmap

Advancing Sustainable Dairy Practices Across Georgia

Roadmap Overview

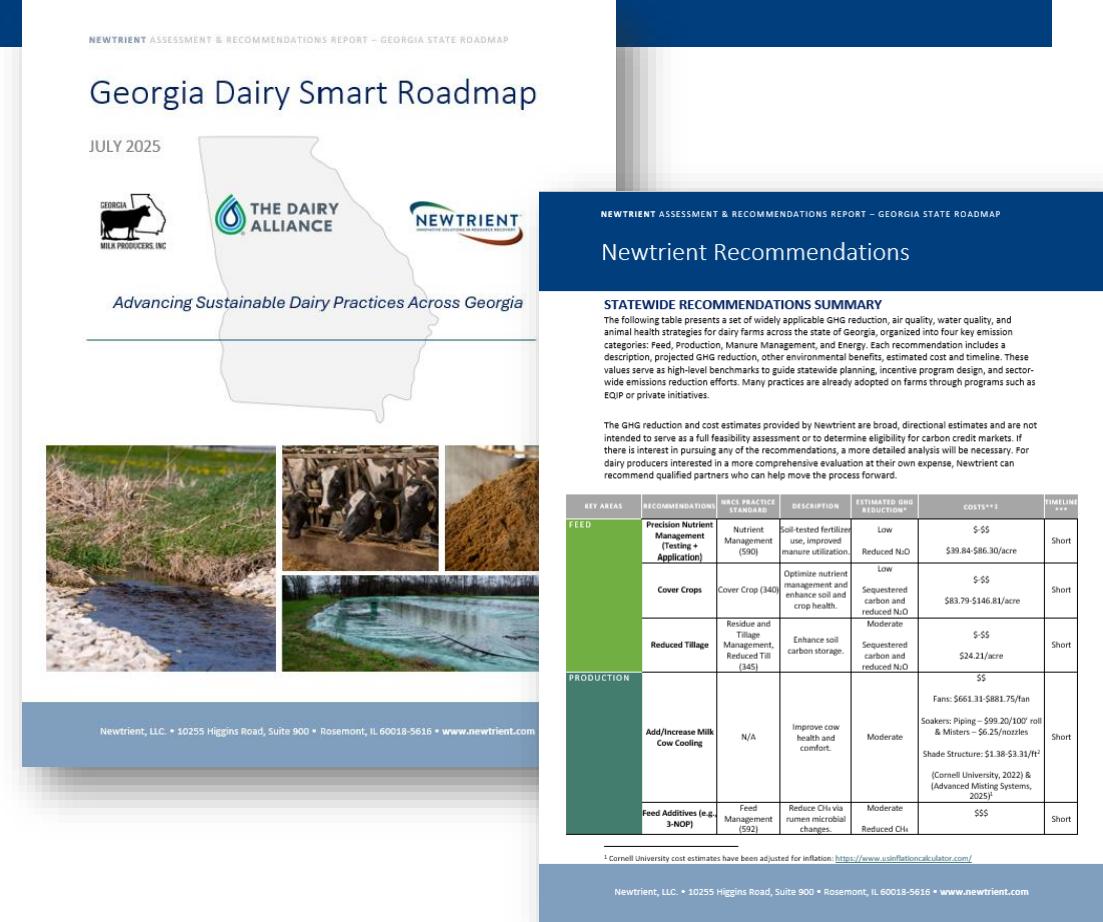
NEWTRIENT'S MISSION

*To reduce the environmental footprint
of U.S. dairy and make it economically
viable to do so*

NEWTRIENT MEMBERSHIP

Who We Are

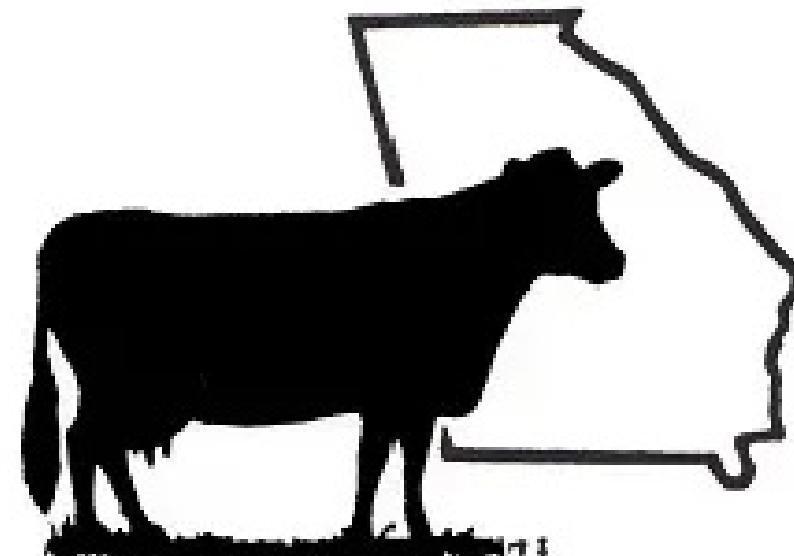
Owned by the U.S. Dairy Industry:
~64% Dairy Cooperatives
~36% National Checkoff



GEORGIA DAIRY SMART ROADMAP

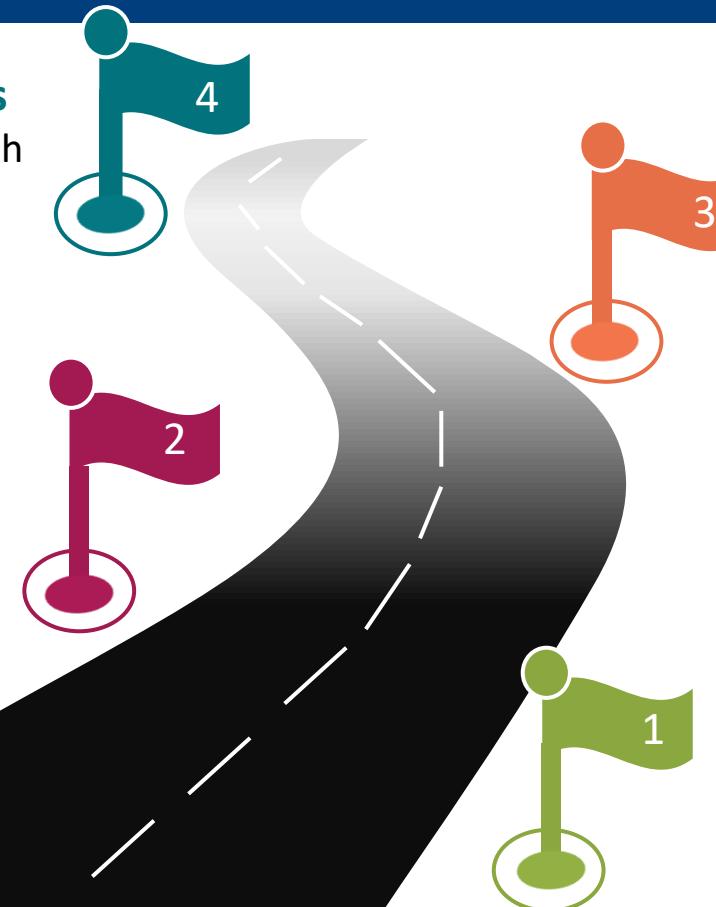
WHAT IS THE GEORGIA DAIRY SMART ROADMAP?

- A sustainability assessment of 10 representative Georgia dairies
 - Evaluation of four key areas of the farm: Feed, Production (enteric), Manure, and Energy
 - Highlights proven practices that deliver the greatest operational and environmental benefit
 - Gives each farm size prioritized recommendations
 - Funded by a USDA-NRCS technical assistance grant
 - **Goal:** Improve environmental outcomes and maintain farm profitability


CHALLENGES DRIVING THE NEED FOR A GEORGIA DAIRY ROADMAP

- **Rising regulatory pressure** around manure, nutrients, and GHGs
- Increasing **heat stress risk**
- **High fertilizer and feed costs**
- Need to protect **long-term economic viability** as milk production grows in the southeast
- **Limited access** to federal funding, technical assistance, and agriculture engineering
- Producers want **practical and data-driven solutions**, not paperwork
- Roadmap provides **clear, phased actions** that work on Georgia dairies
- Highlights **high-impact investment** opportunities for funders

GEORGIA DAIRY OVERVIEW


- ~ 74 dairies statewide
- Three major regions: Coastal Plain, Piedmont, Blue Ridge/Ridge & Valley
- 10 farms participated
- Cohorts:
 - Small (< 250 cows): **4 farms**
 - Medium (251-700 cows): **2 farms**
 - Large (> 701 cows): **4 farms**
- Total herd represented: **12,958 cows**
- Total acres: **7,800+**

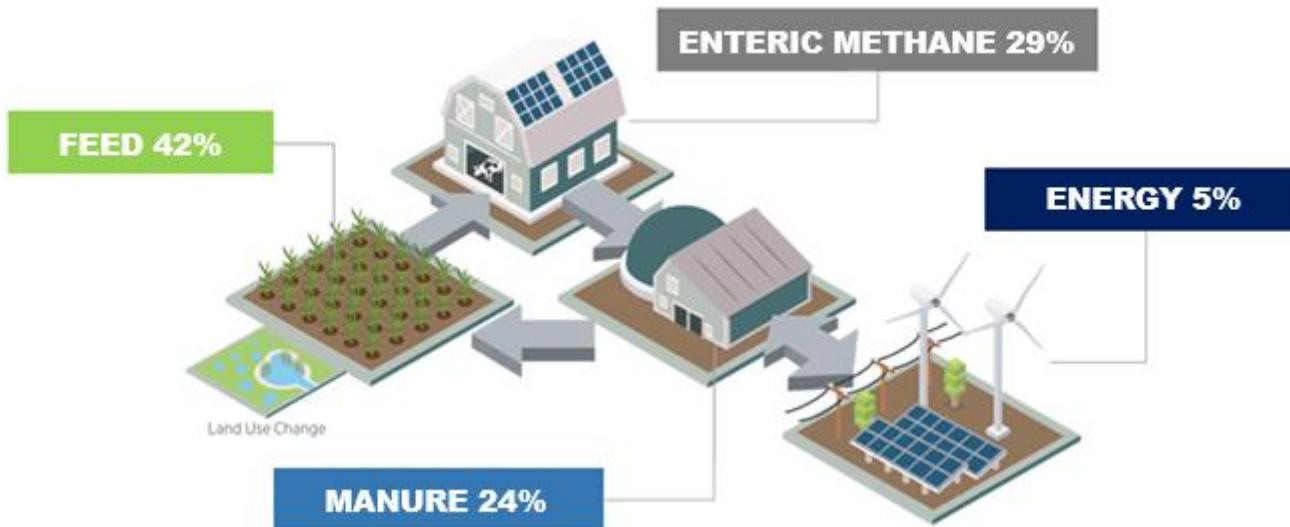
HOW THIS ROADMAP HELPS YOUR FARM

Access Support and Funding Pathways

Use the Roadmap to guide conversations with NRCS, Extension, and Partners.

Understand Which Improvements Matter Most

Learn which upgrades offer the greatest operational and environmental benefit.


Know Where To Start

Get a clear starting point for planning and prioritizing improvements.

Identify What Fits Your Farm

See which practices and technologies apply to your farm size and region.

DAIRY'S ENVIRONMENTAL FOOTPRINT

(Calculated from Pelton et. al, 2025. Spatially Resolved Greenhouse Gas Emissions of U.S. Milk Production in 2020. Environ Sci Technol.)

The Average GHG Footprint of a Southeast Dairy Farm

Metric	Southeast	National
GHG Footprint	2.67 lbs. CO ₂ e/lb. FPCM	2.23 lbs. CO ₂ e/lb. FPCM
GHG per Cow	23.67 MTCO ₂ e	24.53 MTCO ₂ e
Milk Production	19,000-20,000 lbs./cow/year	24,200 lbs./cow/year
Milk per Cow	63.9 lbs./cow/day	79.3 lbs./cow/day

Lower milk production explains 122% of the observed GHG increase.

Statewide Findings & Priority Recommendations

LEARNINGS ACROSS GEORGIA DAIRIES

Key Challenges

- Heat stress reduces productivity and increases carbon intensity
- Limited solids separation reduces storage and increases methane
- Manure storage often insufficient for agronomic timing
- Soil and manure testing inconsistent across farms
- Many low-cost, high-impact practices underused
- Economics remain the biggest barrier to adoption

Priority Statewide Recommendations

Feed

- Precision nutrient management
- Cover crops
- Reduced tillage

Production

- Milk cow cooling
- Feed additives
- Precision feeding
- Manage grazing

Manure

- Coarse/fine solids separation
- Waste holding pond
- Comprehensive Nutrient Management Plan (CNMP)

Energy

- Solar shades/panels
- Hot water heat recovery
- Energy efficiency upgrades

LARGE FARMS TOP OPPORTUNITIES

Key Areas	Recommendations	Estimated GHG Reduction*	Costs **	Timeline***
Feed	Integrate Manure Application and/or Add Wastewater Center Pivot Irrigation	Low	\$\$\$	Short
	Add Transfer Piping to Pivots/Irrigation System	Low	\$\$	Midterm
Production	Add/Increase Milk Cow Cooling	Moderate	\$\$	Short
	Add Freestall Barn(s)	Low to Moderate	\$\$\$\$	Midterm
	Convert to Manure Solids for Bedding	Moderate	\$\$\$	Short

NOTES:

*Estimated GHG Reduction: Low = Low Reduction Potential; Moderate = Moderate Reduction Potential; High = High Reduction Potential

**COSTS: \$ = MINIMAL INVESTMENT; \$\$ = MODERATE INVESTMENT; \$\$\$ = SIGNIFICANT INVESTMENT;\$\$\$\$ = LARGE-SCALE INVESTMENT

***TIMELINE: SHORT = <12 MONTHS; MIDTERM = 12-24 MONTHS; LONG = >24 MONTHS

LARGE FARMS (>701 COWS)

LARGE FARMS TOP OPPORTUNITIES

Key Areas	Recommendations	Estimated GHG Reduction*	Costs **	Timeline***
Manure Management	Add/Improve Coarse Solids Separation	Moderate	\$\$-\$\$\$\$	Short
	Add/Upgrade Concrete Surface for Solids Management	Low	\$\$	Short
	Add/Improve Sand Separation	Low	\$\$-\$\$\$\$	Short
	Add Waste Holding Pond	Low to Moderate	\$\$\$	Midterm
	Cover Holding Pond and Flare Emissions	High	\$\$\$\$	Long

NOTES:

*Estimated GHG Reduction: Low = Low Reduction Potential; Moderate = Moderate Reduction Potential; High = High Reduction Potential

**COSTS: \$ = MINIMAL INVESTMENT; \$\$ = MODERATE INVESTMENT; \$\$\$ = SIGNIFICANT INVESTMENT; \$\$\$\$ = LARGE-SCALE INVESTMENT

***TIMELINE: SHORT = <12 MONTHS; MIDTERM = 12-24 MONTHS; LONG = >24 MONTHS

MEDIUM FARMS TOP OPPORTUNITIES

Key Areas	Recommendations	Estimated GHG Reduction*	Costs **	Timeline***
Feed	Integrate Manure Application and/or Add Wastewater Center Pivot Irrigation	Low	\$\$\$	Short
	Add Transfer Piping to Pivots/Irrigation System	Low	\$\$	Midterm
	Begin or Increase Cover Crops	Low	\$	Short
Production	Add/Increase Milk Cow Cooling	Moderate	\$\$	Short
	Add Freestall Barn(s)	Low to Moderate	\$\$\$\$	Midterm

NOTES:

*Estimated GHG Reduction: Low = Low Reduction Potential; Moderate = Moderate Reduction Potential; High = High Reduction Potential

**COSTS: \$ = MINIMAL INVESTMENT; \$\$ = MODERATE INVESTMENT; \$\$\$ = SIGNIFICANT INVESTMENT; \$\$\$\$ = LARGE-SCALE INVESTMENT

***TIMELINE: SHORT = <12 MONTHS; MIDTERM = 12-24 MONTHS; LONG = >24 MONTHS

MEDIUM FARMS (251-700 COWS)

MEDIUM FARMS TOP OPPORTUNITIES

Key Areas	Recommendations	Estimated GHG Reduction*	Costs **	Timeline***
Manure Management	Add/Improve Coarse Solids Separation	Moderate	\$\$-\$\$\$\$	Short
	Add/Upgrade Concrete Surface for Solids Management	Low	\$\$	Short
	Add Waste Holding Pond	Low to Moderate	\$\$\$	Midterm
	Add/Upgrade Waste Transfer Pump	Low	\$\$	Short
Energy	Add Hot Water Heat Recovery	Moderate	\$	Short

NOTES:

*Estimated GHG Reduction: Low = Low Reduction Potential; Moderate = Moderate Reduction Potential; High = High Reduction Potential

**COSTS: \$ = MINIMAL INVESTMENT; \$\$ = MODERATE INVESTMENT; \$\$\$ = SIGNIFICANT INVESTMENT; \$\$\$\$ = LARGE-SCALE INVESTMENT

***TIMELINE: SHORT = <12 MONTHS; MIDTERM = 12-24 MONTHS; LONG = >24 MONTHS

SMALL FARMS (<250 COWS)

SMALL FARMS TOP OPPORTUNITIES

Key Areas	Recommendations	Estimated GHG Reduction*	Costs **	Timeline***
Feed	Integrate Manure Application and/or Add Wastewater Center Pivot Irrigation	Low	\$\$\$	Short
	Add Transfer Piping to Pivots/Irrigation System	Low	\$\$	Midterm
	Begin Soil and Manure Testing	Low	\$	Short
Production	Add/Increase Milk Cow Cooling	Moderate	\$\$	Short
	Manage Grazing	Moderate	\$	Short
	Add Waterers	Low	\$\$	Midterm

NOTES:

*Estimated GHG Reduction: Low = Low Reduction Potential; Moderate = Moderate Reduction Potential; High = High Reduction Potential

**COSTS: \$ = MINIMAL INVESTMENT; \$\$ = MODERATE INVESTMENT; \$\$\$ = SIGNIFICANT INVESTMENT; \$\$\$\$ = LARGE-SCALE INVESTMENT

***TIMELINE: SHORT = <12 MONTHS; MIDTERM = 12-24 MONTHS; LONG = >24 MONTHS

SMALL FARMS (<250 COWS)

SMALL FARMS TOP OPPORTUNITIES

Key Areas	Recommendations	Estimated GHG Reduction*	Costs **	Timeline***
Manure Management	Add/Improve Coarse Solids Separation	Moderate	\$\$-\$\$\$\$	Short
	Add/Upgrade Concrete Surface for Solids Management	Low	\$\$	Short
	Add/Upgrade Waste Transfer Pump	Low	\$\$	Short
	Develop a Comprehensive Nutrient Management Plan (CNMP)	Low	\$	Short
Energy	Add Solar Shades	Moderate	\$\$\$\$	Long

NOTES:

*Estimated GHG Reduction: Low = Low Reduction Potential; Moderate = Moderate Reduction Potential; High = High Reduction Potential

**COSTS: \$ = MINIMAL INVESTMENT; \$\$ = MODERATE INVESTMENT; \$\$\$ = SIGNIFICANT INVESTMENT; \$\$\$\$ = LARGE-SCALE INVESTMENT

***TIMELINE: SHORT = <12 MONTHS; MIDTERM = 12-24 MONTHS; LONG = >24 MONTHS

Environmental & Financial Impact

ENVIRONMENTAL BENEFITS

Across all farm types, the recommended practices improve on-farm efficiency, and those efficiency gains directly translate into better environmental outcomes.

What the improvements deliver:

- **More efficient manure systems** → lower methane from storage
- **Nutrient-use efficiency** → lower nitrous oxide from soils, reduced runoff and leaching
- **Improved cow comfort** → increased milk production
- **Healthier, better-managed soils** → increased soil carbon content
- **More efficient energy use and heat recovery** → reduced energy-related GHG

PRODUCER ECONOMICS

The Roadmap emphasizes improvements that:

- Reduce input costs (e.g. fertilizer, bedding, labor)
- Increase milk production
- Lower transport and handling costs
- Improve nutrient-use efficiency
- Offset costs through NRCS and carbon credit programs
- Saves energy or reduce energy costs
- Increase crop yield and quality
- Allow ongoing improvements that build on each other

POTENTIAL FUNDING AVAILABLE

Federal Programs:

- Conservation Stewardship Program (CSP)
- Environmental Quality Incentives Program (EQIP)
- Georgia Natural Resources Conservation Service

State and Local programs may also be available to provide grants, cost-share programs and low-interest loans

- University of Georgia Cooperative Extension
- Southern Cover Crops Council
- Georgia Association of Conservation Districts
- Southern Sustainable Agriculture Research & Education
- Georgia Power

THE ROLE OF CARBON INSETS

- Dairy Product Companies, our customers, increasingly want to invest in dairy methane reduction
- Inset markets help dairy producers gain **direct revenue** from the dairy product supply chain
- Most promising areas:
 - Manure methane capture
 - Solids separation
 - Feed management
- This is an early but growing long-term opportunity

NEXT STEPS AND ONGOING EFFORTS

- Identify state and national funding opportunities to match recommendations and farmer interests
- Capture farmer-to-farmer and consumer testimonial stories from participating farms
- Advise Southeast NRCS Technical Committee's on barriers dairy farmers face
- Look to expand roadmaps to other Southeast states or dairy producing areas with specific challenges

Newtrient Resources

NEWTRIENT SOLUTIONS CATALOG

521 SOLUTIONS

- 40+ Manure Additive Companies
- 50+ NRCS Practice Standards
- 100+ Service Providers
- 300+ Technologies

Newtrient
Solutions
Catalog

Sector

Additives
 Practices
 Services
 Technology

Technology Types

Active Solids Drying
 AD Support
 Additive
 Aeration
 Ammonia Stripping
 Anaerobic Digestion
 Centrifuge
 Chemical Flocculation
 Clean Water Membrane Systems
 Composting
 Drum Composter / Bedding Recovery

EVOLUTION OF THE SOLUTIONS CATALOG

ABOUT US ▾ CATALOG ▾ RESOURCES ▾ OUR TEAM ▾ CONTACT ▾

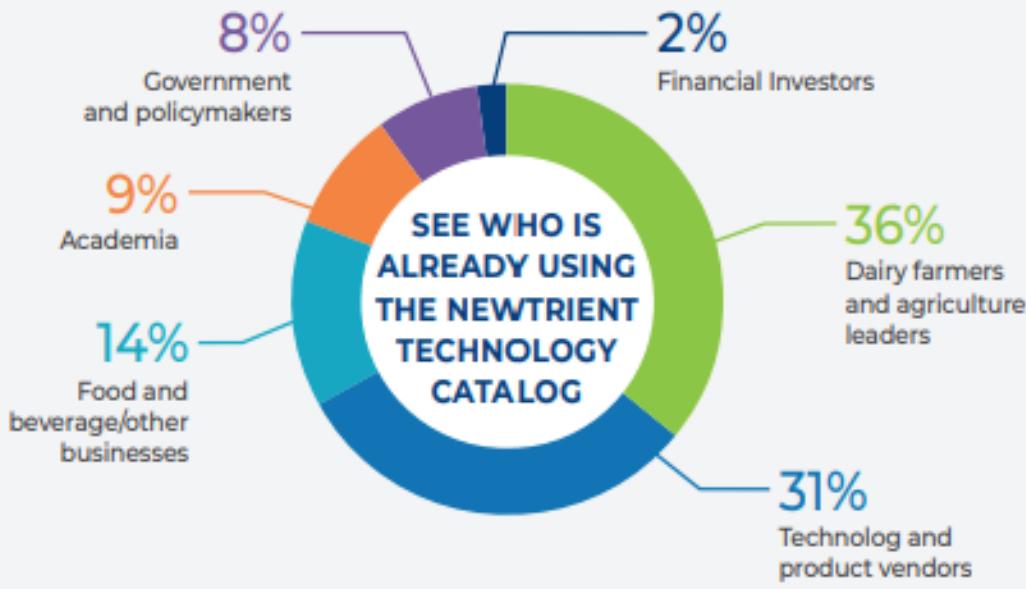
Solutions Catalog

Welcome to Newtrient's Solutions Catalog

Search for solutions used to treat and manage manure and other ways to reduce the impact you have on the environment.

 DVO, Inc. – Linear Vortex Digester

DVO's patented Two Stage Linear Vortex™ digesters process more industrial and farm wastes in North America than any other company, or design. Largely due to unparalleled performance: DVO's Two Stage Linear Vortex™ digester systems greatly reduce odors, are cost-effective, scalable, operate automatically and require low maintenance. DVO is the U.S....


 DariTech, Inc. – Bedding Master Recovery System

Scraped manure, or dewatered flush manure, is fed directly into an EYS Separator specially designed by DariTech to provide the ideal feedstock for the BeddingMaster, which is made up of manure solids at 35% dry matter. The separated solids are fed into the BeddingMaster by passing through the fixed opening...

 FAN Separator – Bedding Recovery System

As the costs for high quality bedding material have extremely risen in the last few years more and more innovative milk farms use bio bedding material. This is made of the undigested fibers (feed remains) of the slurry. The BRU concept (Bedding Recovery Unit) developed by FAN, a daughter of...

HOW IT WORKS

Technology Catalog Vendor Page Details

Newtrient Recognized Designation Seal
Given only to the top-performing technologies.

Business Insights, Technical Insights, Case Studies, and Photos

Download additional information about the technology and how it's worked on other dairy farms.

NEW!
Critical Environmental Indicators

See how a technology rates on factors most important to your farm - odor reduction, pathogen control, GHG reduction, phosphorus recovery and more.

NEWTRIENT SNAPSHOT

Agrilab Technologies Inc.

Compost Aeration and Heat Recovery (CAHR) Technology

BUSINESS OVERVIEW
Based in northern Vermont, Agrilab Technologies Inc. (AGT) comprises a team of compost engineers, dedicated to advancing innovative agricultural practices. Committed to building healthy soil and reducing waste, AGT assists its customers in elevating their composting operation to the next level. Following initial research and development efforts in Canada, AGT successfully introduced its Compost Aeration and Heat Recovery (CAHR) technology in Vermont in 2006. AGT has now implemented CAHR systems in seven states and consults on projects nationally and internationally.

PROJECT
TECHNOLOGY OVERVIEW
By employing aerated static pile (ASP) or turned aeration window (TAW) practices and optimizing oxygen levels, the CAHR system enhances composting efficiency while also capturing renewable thermal energy generated during the process. This heat can be utilized for heating facilities, pre-heating wash water, drying products before screening and distribution, and enables composting operations to continue even in freezing winter conditions.

PROJECT SIZE
The scale at which a composting system on a dairy can operate depends on the manure management system, size of the operation, and feasibility. Based on a feedstock bulk density of 1,000 lbs/yd³, a typical batch size of feedstock ranges from 110 to 300 yd³, depending on the mixture. The most popular equipment models can accommodate operations with feedstock volumes ranging from 1,000 to 30,000 yd³/year, making them adaptable for various scales. Batch retention times range from 2 to 16 weeks. The expanded product line serves small dairies with as little as 100 yd³/year, or the larger modular units can process over 100,000 yd³/year.

REQUIREMENTS
For optimal implementation, farmers need a concrete or gravel working pad for windrows, power and data connections, and a consistent source of a raw, organic by-product to be used as feedstock, such as bedded manure, dewatered manure solids, or spoiled feed. Proper planning and regulatory compliance are crucial along with routine maintenance, monitoring, record keeping, and training for personnel to keep the system running effectively and efficiently.

Newtrient, LLC | www.newtrient.com | October 2023

Vendor Snapshots

NEWTRIENT SUMMARY: Compost Aeration & Heat Recovery (CAHR) Agrilab Technologies Inc.

INTRODUCTION
Starting in 2016 and continuing through 2017, VNAP collaborated with Agrilab Technologies to implement two CAHR systems. This initiative aimed to expedite composting, reduce costs, and harness thermal energy generated during decomposition. The captured heat serves various purposes, including facility heating, pre-heating wash water, drying products before screening and distribution, and enabling year-round composting operations.

The fundamental design of the CAHR system includes compost windrows positioned on a paved pad with a longitudinally oriented shallow trench. This trench contains perforated HDPE piping nested in wood chips, connecting to insulated HDPE piping leading to a shipping container equipped with an aeration blower (fan), sensors (temperature, oxygen and flow), controls, actuated duct gate valves and a heat exchanger. The system utilizes both positive and negative aeration mechanisms, achieved through aeration blowers. Positive aeration involves the introduction of fresh air into the system, while negative aeration involves the removal of stale air. Recirculation of hot vapor between windrows is an additional capability to jump start the process, particularly in cold weather conditions. These mechanisms enhance the heat transfer process, allowing efficient transfer of heat to the water within the heat exchanger. This recovered heat is employed for radiant floor heating in the bagging building and pre-drying finished compost, concurrently promoting quicker maturation, and reduced turning requirements, thus curtailing diesel, labor, and equipment maintenance costs.

FIGURE 1: FLOW DIAGRAM OF A CAHR SYSTEM

The CAHR system consists of four pipe zones with holes. It operates in three ways:

- Removing Moisture:** One zone removes vapor, passes it through a heat exchanger, and releases it outside.
- Introducing Fresh Air:** Another zone draws in fresh air from the surroundings, helping to keep the system well-ventilated.
- Recirculating Vapor:** In a different setup, vapor is taken from one zone, heated in the heat exchanger, and directed into another zone. This not only warms the receiving zone but also encourages the growth of helpful microbes in compost piles, making the composting process faster.

Newtrient, LLC | www.newtrient.com | October 2023

Evaluation Summaries

RESOURCES & OUTREACH

NEWTRIENT

APPLICATION FOR COMPONENT ADDITION TO NRCS

NRCS Practice Standard 317 (Evaluation Followed Process Standard 629 Protocol)

For Acceptance of Compost Aeration

STUDY PREPARED BY:
Mark Stoermann
Newtrient Technology Advancement Team

June 2022

Comprehensive Reports

SOLUTIONS CATALOG

NEWTRIENT

ABOUT US ▾ CATALOG ▾ RESOURCES ▾ OUR TEAM ▾ CONTACT ▾

Solutions Catalog

HOME / SOLUTIONS CATALOG

Sort By

Scoring

Search

Search ...

Sector

Additives

Practices

Services

Technology

Technology Types

Active Solids Drying

AD Support

Additive

Aeration

Ammonia Stripping

Anaerobic Digestion

Centrifuge

Chemical Flocculation

Clean Water Membrane Systems

Welcome to Newtrient's Solutions Catalog

Search for solutions used to treat and manage manure and other ways to reduce the impact you have on the environment.

 DVO, Inc. – Linear Vortex Digester

DVO's patented Two Stage Linear Vortex™ digesters process more industrial and farm wastes in North America than any other company, or design. Largely due to unparalleled performance: DVO's Two Stage Linear Vortex™ digester systems greatly reduce odors, are cost-effective, scalable, operate automatically and require low maintenance. DVO is the U.S.

Sector

Additives

Practices

Services

Technology

every System

into an EVO I feedstock for the my matter. The through the fixed

System

risen in the last dding material. This The BRU concept

RESOURCE LIBRARY

RESOURCE LIBRARY

BLOG

BLOG

ABOUT US ▾ CATALOG ▾ RESOURCES ▾ OUR TEAM ▾ CONTACT ▾

Blog

HOME / BLOG

Categories

Ecosystem Services

Manure Management Technologies

Manure Products

Newtrient

Nutrient Recovery

Articles and posts about recent industry happenings

Look below for points of interest on dairy and sustainability.

Newtrient Awarded Over \$18M to Accelerate Methane Emission Reductions on Farms in Midwest and Idaho

Posted 11/28/2023 by Wendy David

Media Contact: Jamie Vander Molen Boehl, SVP, Sustainability Initiatives & Business Development, Newtrient jamie.boehl@newtrient.com (312) 898-8218 ROSEMONT, IL – Nov. 28, 2023 – On November 1, the U.S. Department of Agriculture (USDA) awarded Newtrient three grants totaling over \$18 million in funding to support dairy methane emission reduction....

[Read More](#)

Collaborative Innovation:

Newtrient Awarded Over \$18M to Accelerate Methane Emission Reductions on Farms in Midwest and Idaho

Posted November 28, 2023 by Wendy David

Media Contact:
Jamie Vander Molen Boehl
SVP, Sustainability Initiatives & Business Development, Newtrient
jamie.boehl@newtrient.com
(312) 898-8218

ROSEMONT, IL – Nov.

2023 –

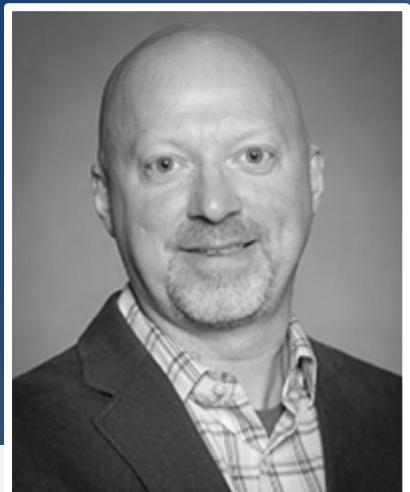
Department of Agriculture (USDA) awarded Newtrient three grants totaling over \$18 million in methane emission reduction projects in the Midwest and Idaho. The funding is part of the USDA's Natural Resources Conservation Service's (NRCS) Conservation Innovation Program (CIP) which awarded more than \$1 billion in funding to 81 projects, including 30 grants to dairy farms.

This investment enables Newtrient to leverage Natural Resources Conservation Service's investment combined with private sector investment to incentivize adoption of conservation practices. In addition to the \$18 million NRCS grants, Newtrient has committed funding of \$7 million collectively from dairy companies who will purchase the reduction credits generated by the producer as carbon assets.

"Newtrient is committed to the environmental and economic well-being of dairy farmers. By working together, we can achieve significant reductions in methane emissions while maintaining a

CONNECT WITH US

NEWSLETTER & CONTACT
FORM


LINKEDIN

YOUTUBE

NEWTRIENT TEAM

Chris Kopman

Chief Executive Officer
ckopman@newtrient.com

Mark Stoermann

Chief Operating Officer
mstoerm@newtrient.com

Jamie Boehl

SVP, Sustainability Initiatives
jamie.boehl@newtrient.com

Wendy David

Manager, Sustainability Initiatives
wendy.david@newtrient.com

Corrine Brown

Analyst, Sustainability Initiatives
corrine.brown@newtrient.com

Questions?

