







#### USING TECHNOLOGY TO ENHANCE PROFITABILITY



#### JEFFREY BEWLEY



Amanda Stone, Randi Black, Barbara Wadsworth, Di Liang, Karmella Dolecheck, Matthew Borchers, Lauren Mayo, Nicky Tsai, Maegan Weatherly, Melissa Cornett, Samantha Smith, Megan Hardy, Jenna Klefot, Juha Hietaoja, Barbara Wolfger, Elizabeth Eckelkamp, Savannah Meade, Carissa Truman, Alison DiGennaro, Emory Thomas, Amanda Lee, Michele Jones, Brittany Core, Joey Clark, Denise Ray, Amelia Fendley

#### **TECHNOLOGICAL TRANSFORMATION**

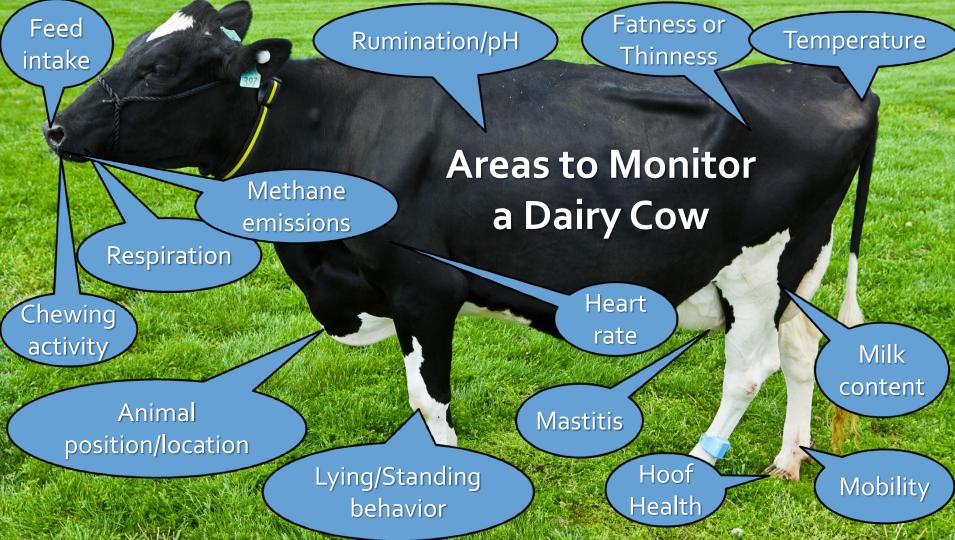
- Extension of other industries
- New dairy industry demands
  - Animal well-being
  - Consumer demands
  - Environmental pressure
  - Labor challenges
  - Economic competition



# **COW CHALLENGES**

- Finding cows in heat
- Finding and treating lame cows
- Finding and treating cows with mastitis
- Catching sick cows in early lactation
- Understanding nutritional status of cows
  - Feed intake
  - Body condition (fat or thin)
  - Rumen health (pH/rumination time)




#### **PRECISION DAIRY MONITORING**

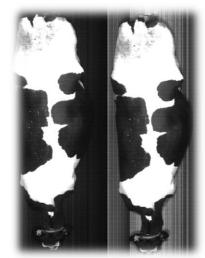
#### Cow-Focused Technologies










#### HAPPY COWS VIA TECHNOLOGY?

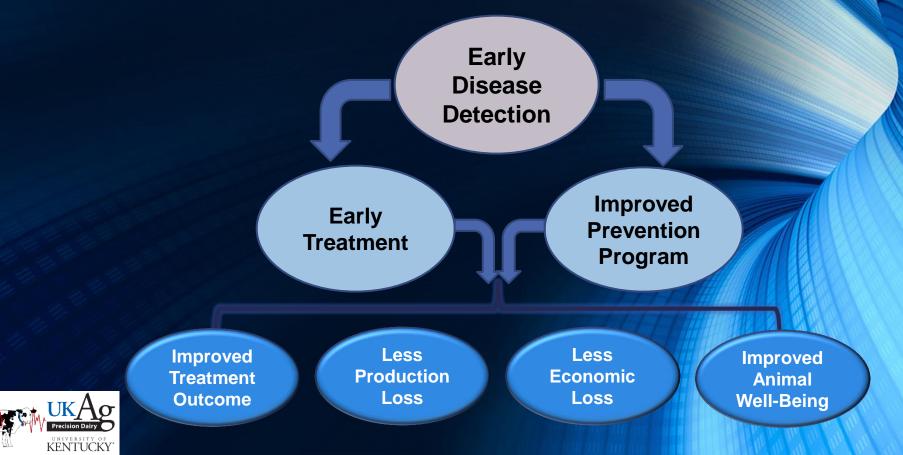













#### **PRECISION DAIRY BENEFITS**

- Improved animal health and well-being
- Early detection
- Increased efficiency
- Improved product quality
- Minimized adverse environmental impacts
- More objective measures



#### **DISEASE DETECTION BENEFITS**



#### **PRECISION DAIRY MONITORING APPLICATIONS**

- Estrus Detection
- Mastitis Detection
- Fresh Cow Disease Detection
- Lameness Detection
- Calving Detection
- Genetic Traits
- Management Monitoring



#### **THE OPTIONS ARE ENDLESS**



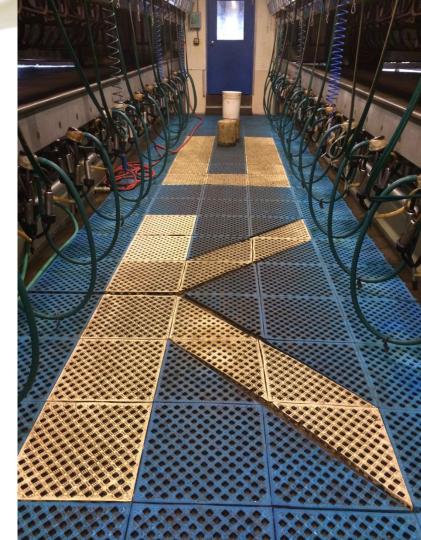

















# **PARLOR PRECISION**





#### **INLINE SOMATIC CELL COUNT**









Mastiline

#### Lely MQCC

#### **DeLaval OCC**

CellSense



#### **Spectroscopy**

- Visible, near-infrared, mid-infrared, or radio frequency
- Indirect identification through changes in milk composition
- AfiLab uses near infrared
  - Fat, protein, lactose





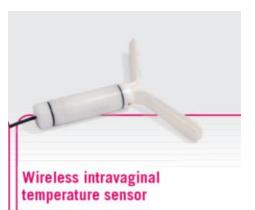






- Progesterone
  - Heat detection
  - Pregnancy detection
- LDH enzyme

   Early mastitis detection
- BHBA
  - Indicator of subclinical ketosis
- Urea
  - Protein status




#### **NECK OR EAR BASED BEHAVIOR MONITORING**



#### **Physiology Monitoring**















# LYING BEHAVIOR MONITORING

- On-farm evaluation of lying time:
  - Identification of cows requiring attention (lameness, illness, estrus)
  - Assessment of facility functionality/cow comfort
  - Assess animal well-being









## **REAL TIME LOCATION SYSTEMS**

# SARTBOU

#### YOUR COWS. YOUR BUSINESS.











# CALVING DETECTION

Heavy Duty

design

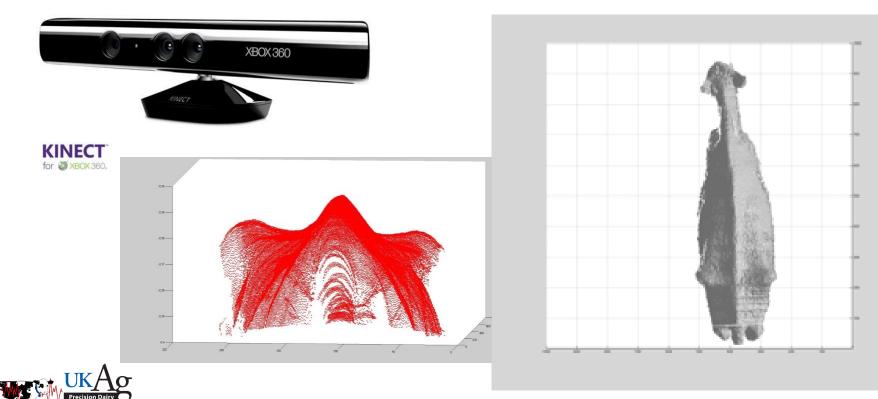
iCalve tail sensor Long life technology Ergonomic Easy to fit










#### UNIVERSITY OF KENTUCKY RESEARCH



**New Technology Development** 

# **3D BCS AUTOMATION**

**KENTUCKY** 



Lau, Shelley, Stone, and Bewley, 2014


## FEED INTAKE: 3D IMAGING (99% R<sup>2</sup>)













Shelley et al., 2013

## **SLEEP MONITORING SYSTEM**

• Sleep importance-immune function, well- being, disease, facilities decisions



- Develop and test a non-invasive monitor using an accelerometer
- Measure head and neck movement to classify sleep/wake behaviors through human observation
- 92 to 93% agreement with human observations



# "In God We Trust; All Others Bring Data"

# William Edwards Deming



#### **BIG DATA**

- Broad term for data sets so large or complex that traditional data processing applications are inadequate—Wikipedia
- Involves analysis, capture, data curation, search, sharing, storage, transfer, visualization, and information privacy
- 90% of the world's data created in the last 2 years





#### **IDEAL TECHNOLOGY**

- Explains an underlying biological process
- Can be translated to a meaningful action
- Cost-effective
- Flexible, robust, reliable
- Simple and solution focused
- Readily available information





## **ECONOMIC CONSIDERATIONS**

- Need to do investment analysis
- Not one size fits all
- Economic benefits observed quickest for heat detection/reproduction





#### ti... Results

#### Investment Analysis of Heat Detection Technologies

Heat detection is a major concern on many dairies today.

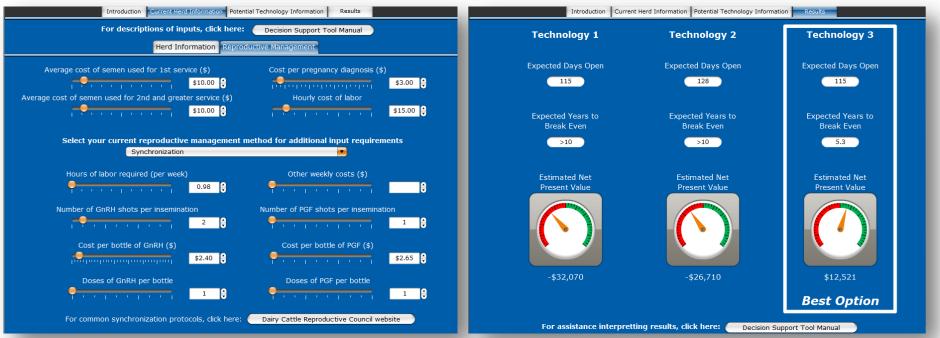
Technologies used to monitor activity levels and other cow parameters can be applied to manage heat detection.

This net present value tool can be used to compare up to three different heat detection technologies in order to determine which might work best economically on a specific dairy.

To use, change information in the "Current Herd Information" and "Potential Technologies" tabs, then review the outcome

Developed by Karmella Dolecheck and Jeffrey Bewley Animal and Food Sciences Department University of Kentucky College of Agriculture






For assistance using this decision support tool, click here:

Decision Support Tool Manual

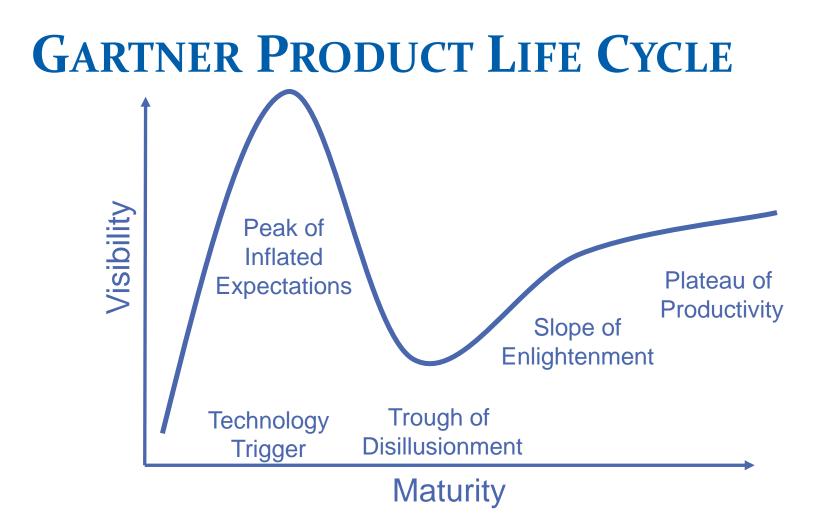
Dolecheck et al., 2014

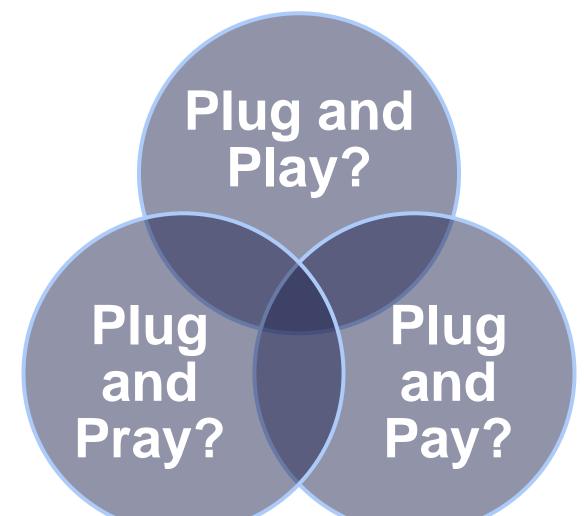
#### **INVESTMENT ANALYSIS OF ESTRUS DETECTION TECHNOLOGIES**



Online decision support tool available at: http://afsdairy.ca.uky.edu/HeatDetectionTechnologies

Dolecheck et al., 2014


#### THE INTANGIBLE VALUE OF INFORMATION
















# UK DAIRY OFFICE





#### GRAPH

#### MARKETING

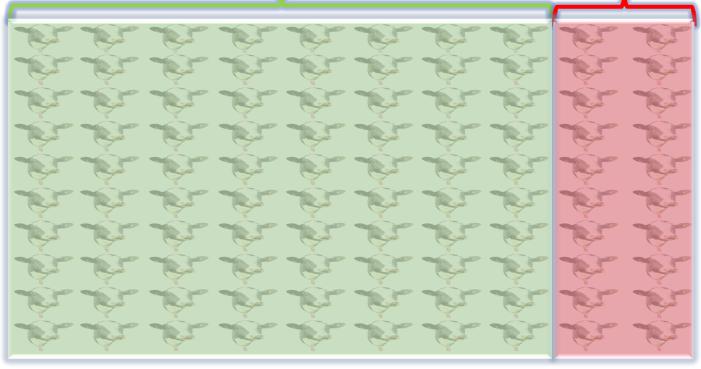
#### APPROACH





#### **SENSITIVITY AND SPECIFICITY**

**Sensitivity** (true positive rate): alert with an observed mastitis case


 $Sensitivity = \frac{true \ positives}{true \ positives \ + \ false \ negatives}$ 

**Specificity** (true negative rate): no alert with no mastitis

Specificity =  $\frac{true \ negatives}{true \ negatives + false \ positives}$ 

#### HOW MANY COWS WITH CONDITION DO WE FIND?

80 Estrus Events Identified by Technology 20 Estrus Events Missed by Technology



#### Example: 100 estrus events

# **HOW MANY ALERTS COINCIDE WITH AN ACTUAL EVENT? 90 Alerts for Cows** 10 Alerts for Cows **Actually in Heat** Not in Heat

#### Example: 100 estrus alerts

## HANDLING DATA

- Examine/Treat/No Treat Alert Decisions
- Protocols for Handling Alerts
- Natural Reactions of Healthy Cows
- Repeat Alerts
- Failed Devices
- Backup Plan for System Outage



#### THE BOOK OF DAVID: COW PEOPLE BENEFIT MOST



## **SIMPLE OVERSIGHTS**

- Heat detection systems only catch cows in heat
- When a system picks up a sick cow, she's still a sick cow
- If you don't do anything with the information,
   it was useless
- Sometimes, you are the guinea pig





#### **RACCOONS LOVE THE TASTE OF CAT5 CABLE**







#### WARNING: Lightning will strike the same technology twice



# **6 TECHNOLOGY QUESTIONS TO ASK**

- What are the sensitivity/specificity for condition of interest?
- What percent of devices fail per year?
- What is your warranty policy?
- What is your policy for upgrading to new versions of devices?
- What are full costs (hardware, devices, maintenance, data storage)?
- Can you get me in touch with existing users?



## **CUSTOMER SERVICE IS KEY**

- More important than the gadget
- Computer literacy
- Not engineers
- Time limits
- Failure of hardware and software



# LOOKING FORWARD

- More sensor systems
  - Milk and image based



- Well-being/Environmental Impact ≥ Reproduction/Health
- Multi-parameter systems
- Machine learning (i.e. neural networks, fuzzy logic)
- Individual farm algorithms



### LOOKING FORWARD

• Cloud-based data integration



- User groups
- Open source hardware (i.e. Raspberry Pi)
- Increased farmer demand for quality alerts
- Purchase decisions beyond gut feel









#### Thank You to All our **Consortium Sponsors!**



#### Jeffrey Bewley, PhD, PAS

407 W.P. Garrigus Building Lexington, KY 40546-0215 Office: 859-257-7543 Cell: 859-699-2998 Fax: 859-257-7537 jbewley@uky.edu www.bewleydairy.com





