

Georgia Dairy Conference, January 2023

Kristan Reed, PhD

Cornell University

Agriculture and the Environment

- All agriculture has an impact on the environment
 - Cultivating the land will alter immediate and surrounding ecosystem
- The goal is to understand and manage the impact and resources in sustainable ways

Climate

•Global Warming Potential

Water Quality

- Freshwater and Marine Eutrophication
- Groundwater Contamination

Air Quality

- Odors
- Particulate Matter
- Ammonia

Soil Health

- •Soil Carbon
- Microbiome

Non-Renewable Resource Use

- •Fossil Fuels
- Minerals
- Metals

Biodiversity

- Insects
- Birds
- Rodents

What are the *potential* environmental impacts of dairy production?

Sustainable Production is more than the environment...

Agriculture that...

- Continues to provide sufficient quantity and quality of food and fiber
- Preserves and enhances conservation of natural resources
- Efficiently uses nonrenewable resources
- Maintains economic viability of farmers
- Enhances the quality of life in rural societies

$$CH_4 (MJ/d) = 2.94 + 0.0585 \times ME intake (MJ/d) + 1.44 \times ADF (kg/d) - 4.16 \times lignin (kg/d).$$

$$CO_2\left(\frac{kg}{d}\right) = 0.42 \frac{kg}{kW} * 9.14^{-5} \frac{kW}{kg \ milk}$$

$$Methane_{liquid} = \left[\left(\frac{24*VS_d*b_1}{1000} \right) * e^{ln(A) - \frac{E}{R*T_R}} \right] + \left[\left(\frac{24*VS_{nd}*b_2}{1000} \right) * e^{ln(A) - \frac{E}{R*T_R}} \right]$$

$$N2O_{strg-dir-daily} = N_{strg-pa} * \epsilon_{MMS} * \epsilon_{N20-dir} * \sigma_{N-N2O}$$
 [MS.5.B.II.a.1]

$$DenitrN = NO3 \times (1 - exp \{ - deNrate \times TempFac \times OrgC \})$$

$$CO_2\left(\frac{kg}{d}\right) = 8.9 \frac{kg}{gal} * 13.6 \frac{gal}{hr} * 8 \frac{hr}{d}$$

 $\textbf{Total CO}_{\textbf{2}} \, \textbf{Carbon Loss} = \text{CO}_2 \, \text{Loss}_{\text{AG}} \, + \text{CO}_2 \, \text{Loss}_{\text{BG}} \, + \, \text{CO}_2 \, \text{Loss}_{\text{Carbon Pools, Decomposition}}$

Two Approaches

Inventory

Objectives:

- Establish baseline
- Track Progress
- Set Goals

Features:

- Static, retrospective
- Longer Intervals
- Large Spatial Scales

Decision Support

Objectives:

- Predict Current & Future Outcomes
- Inform Decisions

Features:

- Static or dynamic
- Smaller scale (farm, field, animal)

Most impact estimates you hear about are from Inventories

- 08 AUGUST 2019 - CORRECTION 08 AUGUST 2019, UPDATE 08 AUGUST 2019, CORRECTION 12 AUGUST 201

Eat less meat: UN climate-change report calls for change to human diet

The report on global land use and agriculture comes amid accelerating deforestation in the Amazon.

Ouirin Schiermeie

The-Counter

The misbegotten promise of anaerobic digesters

by Jessica McKenzie 12.03.2019. 9:30am

Climate Change

Animal Ag News

Meat And Agriculture Are Worse For The Climate Than Power Generation, Steven Chu Says

Jeff McMahon Contributor (1)

From Chicago, I write about climate change, green technology, energy.

THE AGENDA

CLIMATE

Opinion | The Cow-Shaped Hole in Biden's Methane Plan

Agriculture emits more methane than any other sector of the economy. So why is it getting a

Keeping carbon in check: Carbon farming to address a changing climate

A two-pronged approach - one that reduces and reverses emissions - might be the

Climate Adaptation

Starbucks Says Hold the Milk to **Reduce Carbon Footprint**

By Eric Pfanner

January 21, 2020, 9:00 AM EST Updated on January 21, 2020, 10:15 AM EST

Intergovernmental Panel on Climate Change

6th Assessment

April 2022

Total net anthropogenic GHG emissions have continued to rise during the period 2010-2019, as have cumulative net CO2 emissions since 1850... but the rate of growth between 2010 and 2019 was lower than that between 2000 and 2009

Total direct emissions vs total milk production globally

Inventories Establish Long Term Trends 1961 - 2017 increase in emissions: +38.3%

1961 - 2017 increase in production: +144%

Elanco

© 2021 Elanco or its affiliates

Source: https://www.fao.org/faostat/en/#data/EI

Inventories can highlight important relationships that hold true at large scales

Figure 12: Emission intensity and milk yield

Note: Each dot represents a country. The fitted line clearly indicates an inverse relationship between milk yield per cow and emission intensity, i.e. as milk yield increases there is more milk to spread the emissions over.

FAO Stats: fao.org/faostat/

Knowledge gained from inventories will depend on the scale...

... and how total emissions are partitioned/reported

Methodology Matters

- Must be reproducible to enable comparisons over time
- As data availability improves so can the inventories

Capper and Cady: doi:10.1093/jas/skz291

SUSTAINABLE ANIMAL SCIENCE AND PRACTICES

The effects of improved performance in the U.S. dairy cattle industry on environmental impacts between 2007 and 2017

Judith L. Capper,^{†,1} and Roger A. Cady[‡]

Figure 2. Greenhouse gases (CO_2 -eq) per kilogram of milk in original 1944 vs. 2007 comparison (Capper et al., 2009) compared to the current 2007 vs. 2017 comparison with global warming potential values for methane set at 28 (IPCC, 2006) and 34 (IPCC, 2013).

Methodology Depends on Objectives

Rotz et al. (2021): https://doi.org/10.1016/j.jclepro.2021.128153

Farm level insights are possible

43% of 1.0 kg Total GHG Intensity
=
430 g Enteric Methane Intensity

Rotz et al. (2021): https://doi.org/10.1016/j.jclepro.2021.128153

IFSM can also provide more detailed estimates to compare management strategies

This is an example from a representative farm in NY (they haven't released a similar study for the SE yet)

Compares a Baseline farm with other BMPs

- Feed efficiency
- Double Cropping
- No till
- Anaerobic Digestion

Why do we need Decision Support Models?

Inventories

GOAL

HISTORY

In 2009, National Dairy Farmers Assuring
Responsible Management (FARM)™ Program
was **created by the dairy industry**, through
National Milk Producers Federation with
support from Dairy Management, Inc.

Through the Innovation Center, the dairy community has aligned behind FARM as the industry-wide on-farm social responsibility program.

PROGRAM AREAS

FARM Environmental Stewardship

Status

- 2,600+ FARM ES assessments completed since 2017
- **41** participating co-ops and proprietary processors representing **80**% of milk supply
- Trained, 2nd party evaluators
- Resources for implementation and continuous improvement

FARM ES Evaluation

Data Inputs

Results

Footprint (lb CO2e / lb FPCM) broken down by category

On-Site Energy Use

On-Site Manure

Feed Production

The FARM-ES program currently provides an inventory

It provides a static, snapshot of the previous year's footprint from an individual farm and the dairy sector

a. Greenhouse Gas Emission

This leads us to RuFaS...

Founders

Key Stakeholders

How can we use this model for decision support?

Nutrition impacts on environmental outcomes

How does forage quality impact manure and emissions outcomes?

GENERAL HERD CHARACTERISTICS				
Breed	Holstein			
Herd Size	1000			
TMR Diet	Corn Silage, Alfalfa Haylage, SBM, Corn Grain			
Mature Body Weight (lbs/kg)	1,630 / 740			

Parity	Average 305 MY
First	20,935 lbs (9,516 kg)
Second	24,476 lbs (11,125 kg)
Third+	25,481 lbs (11,582 kg)

Forage Quality Comparison

		Corn Silage			Alfalfa Haylage		
Scenario	DM	NDF	DE	Starch	DM	NDF	СР
Baseline	35.1	45	2.84	32.87	43.3	47	18.3
+Forage	34.6	38	2.99	38.18	37.5	45.6	19.0

Some neat results...

Daily outputs of animal numbers

Some neat results...

Animal Intake

Some neat results...

Herd Manure

Milk Production & Intake

- Achieved increased milk production response to forage quality
- Reduced total intake

Feed Efficiency

Intake and Excretion

Methane Intensity and Total Methane

- Baseline scenario is close to US National average enteric methane intensity around 430 g CO₂-eq/kg ECM
- Improved forage quality reduces intensity and total emissions
- Essential to have enteric emissions equations that are sensitive to diet composition

Methane Intensity and Total Methane

- Baseline scenario is close to US National average enteric methane intensity around 430 g CO₂-eq/kg ECM
- Improved forage quality reduces intensity and total emissions
- Essential to have enteric emissions equations that are sensitive to diet composition

Same as taking **25** gas-powered cars off the road!

Herd Enteric Methane (metric tons)

- ~5000 kg CH₄ Emissions
- 120 Metric Tons CO₂-Eq

Methane Intensity and Total Methane

- Baseline scenario is close to US National average enteric methane intensity around 430 g CO₂-eq/kg ECM
- Improved forage quality reduces intensity and total emissions
- Essential to have enteric emissions equations that are sensitive to diet composition

Or the amount of carbon sequestered by planting over **2,000** tree seedlings and growing them for 10 years!

Herd Enteric Methane (metric tons)

- \sim 5000 kg CH₄ Emissions
- 120 Metric Tons CO₂-Eq

RuFaS, a process-based model, as new "engine" in Version 3 (2024)

Account for physical, chemical, and biologic cycles

Provide ability to extrapolate beyond known conditions ("what-if" scenario analysis)

Generate environmental and economic analysis of multiple management scenarios

FARM ES, as it's built today, cannot complete these more complicated calculations

Vision of Success

Created by Rutmer Zijlstra from Noun Project

Footprinting

Calculate baseline estimates
of current farm outputs and
environmental
outcomes

Planning

Identify management
practices that will generate
progress towards your
sustainability goals

Implementation

Implement management plan, track progress, strive for continuous improvement

Created by Made x Made from Noun Project

Impacts

Achieve industry-wide progress towards sustainable dairy production

Thanks for listening!

RuFaS.org <u>rufascornell@gmail.com</u> <u>kfr3@cornell.edu</u>