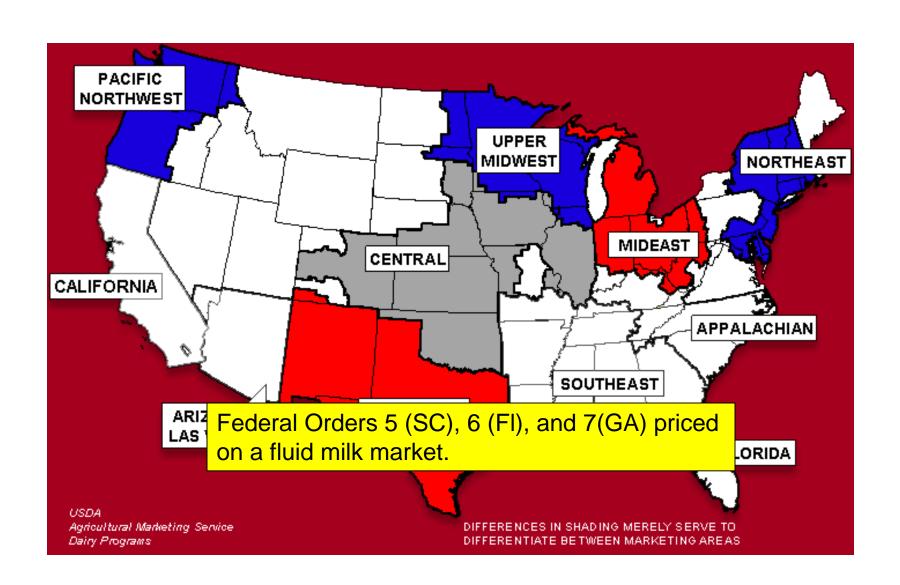
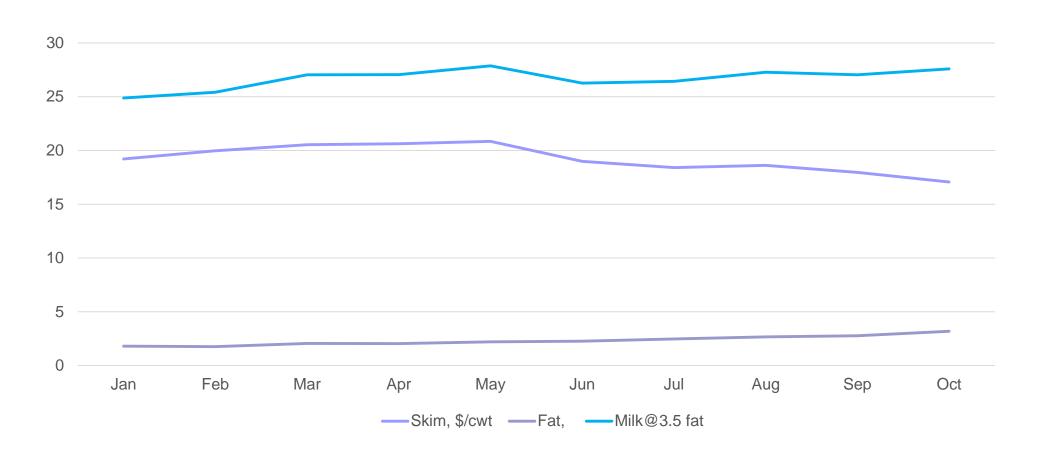
Misconceptions About Milk Fat Depression in the Southeast (and elsewhere)

Tom Jenkins


Animal & Veterinary Sciences
Clemson University


Ŋ.

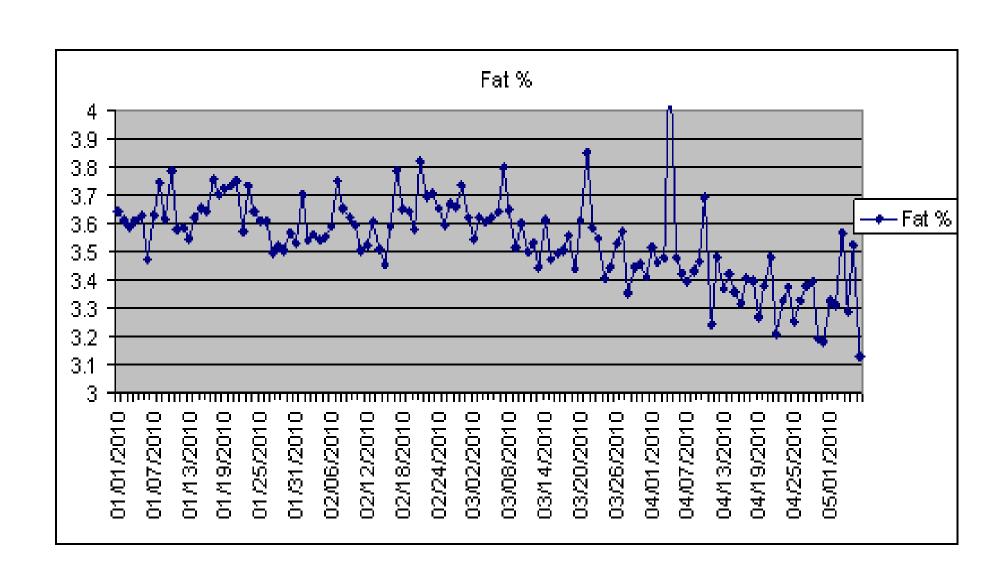
Misconceptions About MFD

- 1.
- 2.
- 3.
- 4
- 5. The fluid-based milk pricing system in the Southeast means MFD is not a big problem!

2014 FMMO 5 -Class 1 Milk

Upper Midwest FMMO

- 1000 cows at 80 lbs/day, 3% protein
 - □3.7% fat \$632,129
 - □3.2% fat \$596, 578

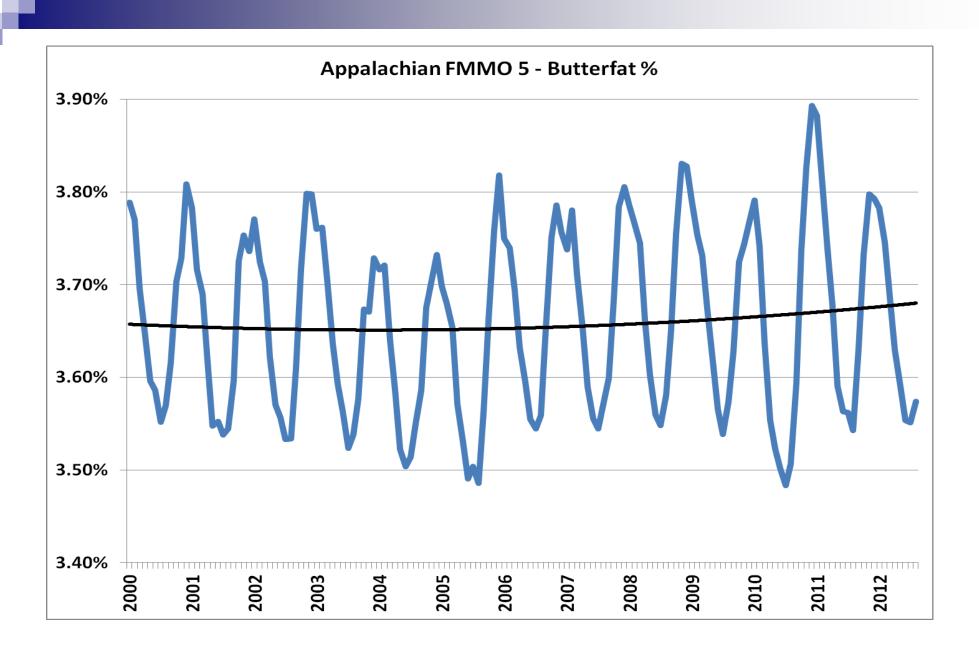

■ Loss = \$35,551/month

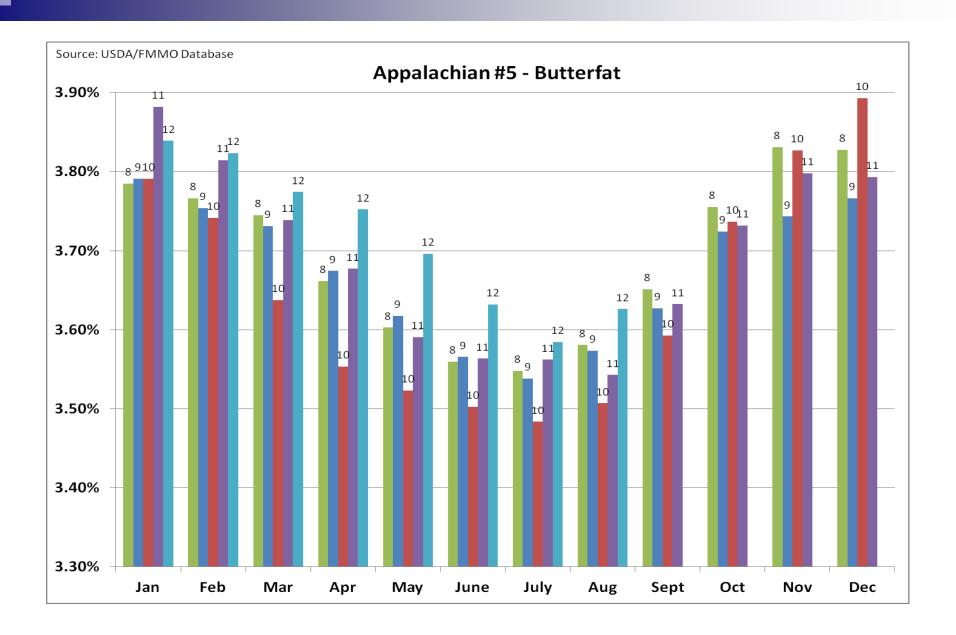
	Skim/cwt.	Fat/lb.	Fat/0.1%
2009	\$9.91	\$1.2653	0.117
2010	\$11.84	\$1.8602	0.174
2011	\$14.55	\$2.2380	0.209
2014 (Dec)	\$19.14	\$2.25	0.210

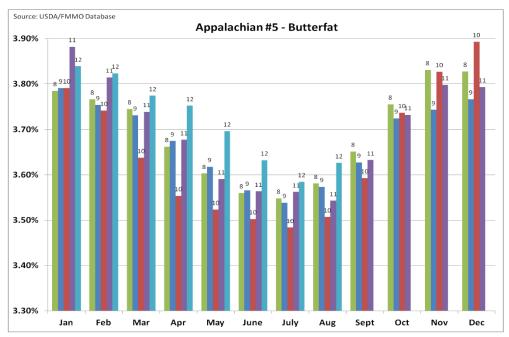
What Does MFD Cost in South Carolina?

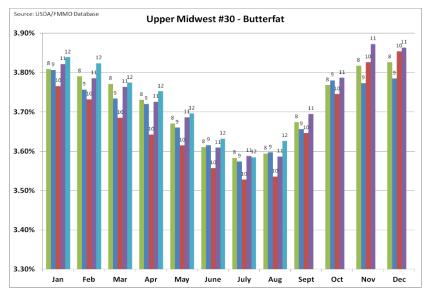
- Federal Orders 5 (SC), 6 (FI), and 7(GA) priced on a fluid milk market.
- Lose \$0.210/cwt for each 0.1% drop in butterfat.
- Example
 - □ 1000 cows at 80 lbs/day
 - □ 0.5 drop in milk fat for 21 days
 - □ Lose \$17,556

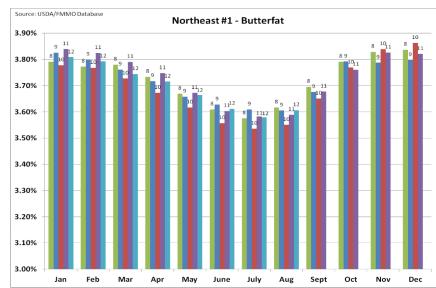
M


Misconceptions About MFD


1.


2.


3.


- 4. Heat stress in the summer makes MFD more of a problem here than anywhere else in the country!
- 5. The way milk is priced in the Southeast means MFD is not a big problem!

What Should We Do During the Summer Slump?

- Recognize it happens
 - □ 2 to 3 points is typical
 - □ Don't panic by making big changes
- Work on lessening its impact
 - □ Don't aggravate it with other management problems
 - overcrowding, inadequate forage quality, over feeding fat or starch, etc.
 - □ Fight heat stress
 - shading, cooling, DCAD, K status

Ŋ.

Misconceptions About MFD

1.

2.

3. MFD is caused by inadequate rumen acetate when I don't feed enough fiber!

- 4. Our heat stress in the summer MFD more of a problem here than anywhere else in the country!
- 5. The way milk is priced in the Southeast means MFD is not a big problem!

Diet Effects on Milk Fat

	High Forage	High Grain	P«
Milk Fat, %	3.36	2.49	0.01
Rumen Ac/Pr	3.08	1.67	0.01

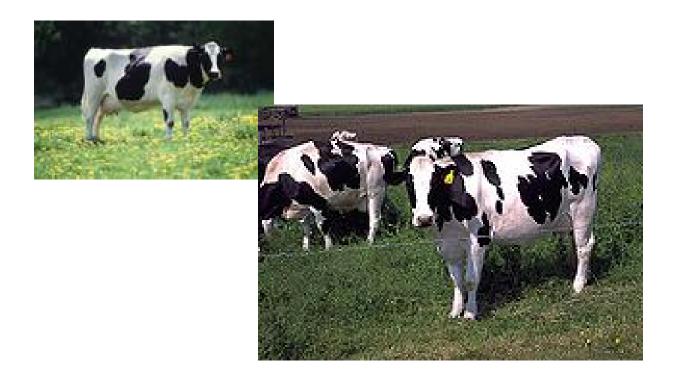
From Griinari et al. 1998. J. Dairy Sci. 81:1251.

Carbon Sources for Milk Fat

- 50% from diet fatty acids
- 50% from mammary gland synthesis
 - Acetate from carbohydrate fermentation in the rumen
 - ☐ Fiber fermentation yields more acetate
 - □ Grain fermentation yields more propionate
- MFD not enough acetate from fiber

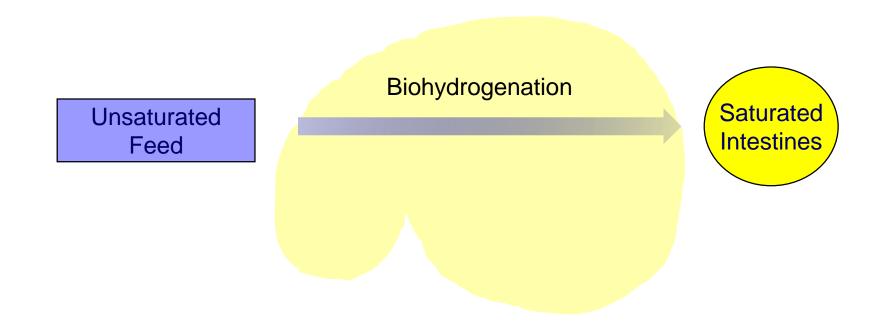
Acetate Shortage NOT Cause of MFD

	Normal diet	HG Diet	
Rumen Production, moles/d			
Acetate	29.4	28.1 ^a	
Propionate	13.3	31.0 ^b	
B-hydroxybutyrate	7.0	9.1°	

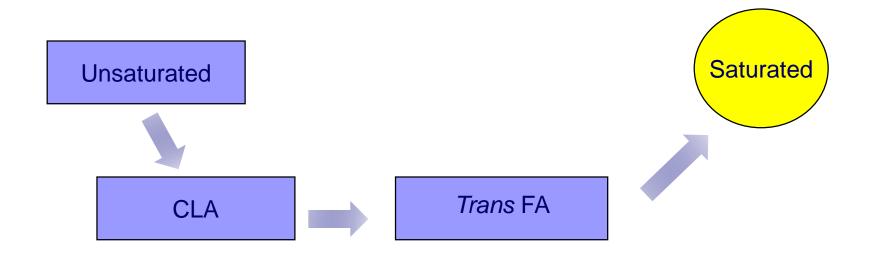

^aDavis et al. 1967

^bBauman et al. 1971

^cPalmquist et al. 1969


Milk Fat Depression

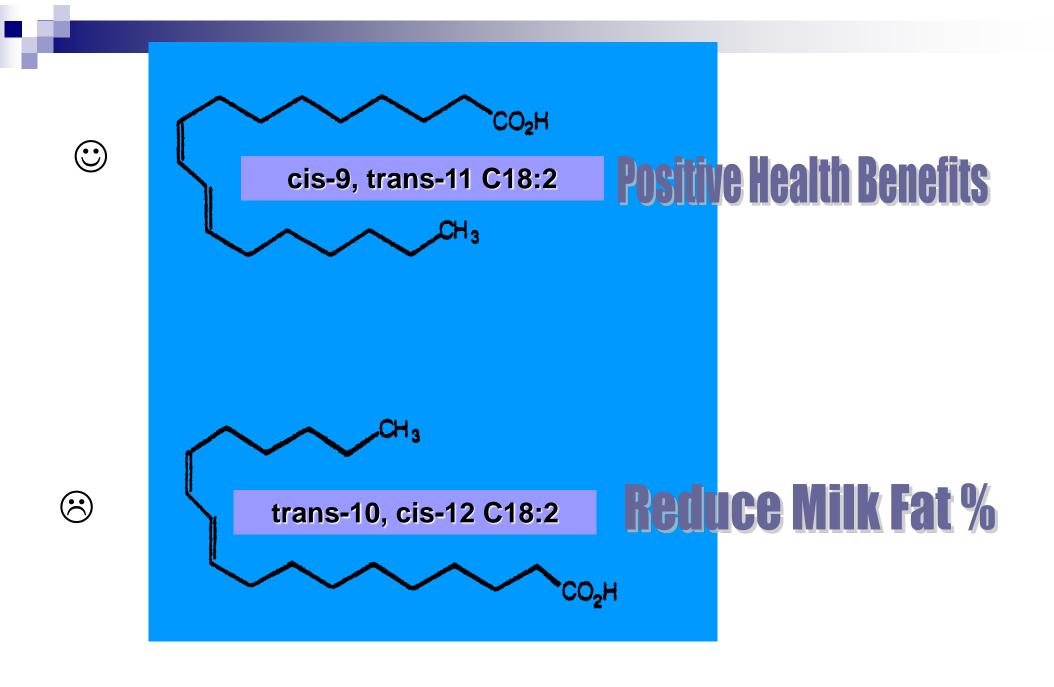
Caused by Changes in Dietary Lipid as it Passes Through the Rumen?

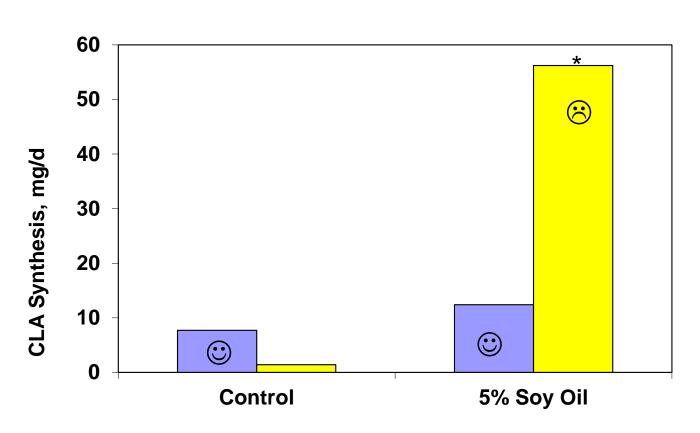


Tom Jenkins, Clemson University

Rumen Lipid Changes

Biohydrogenation Intermediates




MFD

CLA ⊗ Trans 10 Fat Unsaturated CLA ☺ Trans 11 Fat

CLA Production vs Fat Level

Unpublished data from continuous culture studies at Clemson University (n=6)

Example of Labs (2012 prices)

Fat (Ether Extract)
Fat (Acid Hydrolysis)
Fatty Acid Profile

\$9.00. \$17.00 \$34.00 \$9.50 \$29.00.

\$89.50.

\$10.00 \$28.00

\$120.00

Dry Matter: 54.2% Moisture: 45.8%

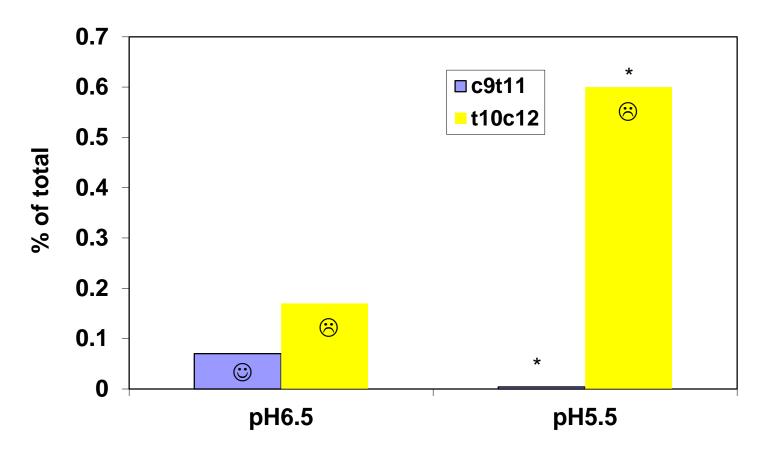
Total

	As Sampled %	Dry Matter Basis %
Fat (ether extract)	N/A	N/A
Fat (acid hydrolysis)	N/A	N/A
Total Fatty Acid	3.00	5.54

			Dry Matter		
		Relative Basis %	Sample Basis %		
C12:0	Lauric Acid	0.09	0.01		
C14:0	Myristic Acid	0.68	0.04		
C16:0	Palmitic Acid	23.47	1.30		
C16:1	Palmitoleic Acid	0.47	0.03		
C18:0	Stearic Acid	2.84	0.16	_	
C18:1	Oleic Acid	25.06	1.39	←	
C18:2	Linoleic Acid	41.90	2.32	_ ←	3.93
C18:3	Linolenic Acid	4.03	0.22	│ ← ──	
C20:0	Arachidic Acid	0.53	0.03		
C20:1	11-Eicosenoic Acid	0.16	0.01		
C20:2	11-14 Eicosadienoic Acid	N/D	N/D		
C22:0	Behenic Acid	0.38	0.02		
C22:1	Erucic Acid	N/D	N/D		
C24:0	Lignoceric Acid	0.42	0.02		
C24:1	Nervonic Acid	N/D	N/D	_	

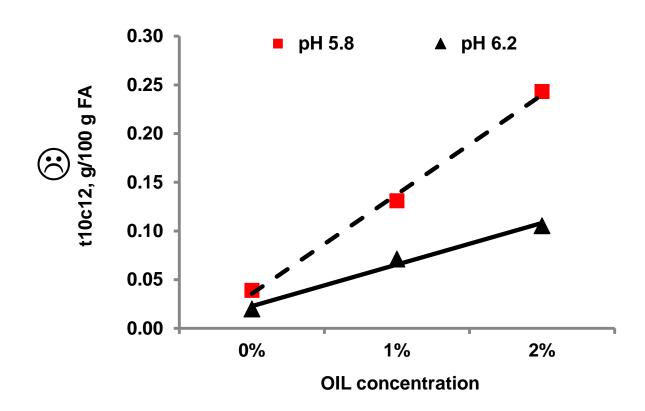
5.54

Tom Jenkins, Clemson University

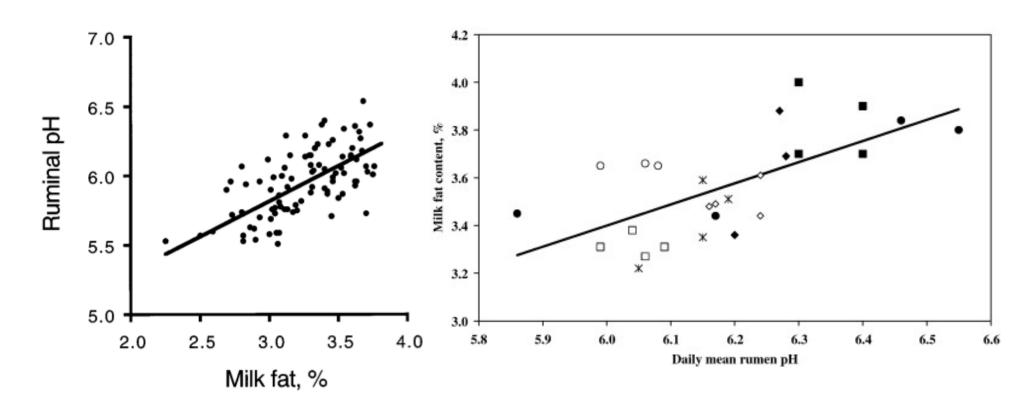

RUFAL

(18:1 + 18:2 + 18:3)

A Way to Account for The High Risk Fatty Acids


- RUFAL < 3%
 - Total FA intake on lower side
 - □ IF have MFD look for other causes first
 - Might have room for more fat if production numbers are good.
- RUFAL > 3%
 - □ Total FA intake on higher side
 - See where fat is coming from
 - Consider backing off a bit if MFD problems

CLA Production vs pH



Continuous culture data taken from Fuentes et al, 2009. Tom Jenkins, Clemson University

pH & Corn Oil Interactions

Rumen pH vs Milk Fat

Allen, 1997 J. Dairy Sci. 80:1447

Zebell et al. 2010. Livestock Science 127:1-10. Tom Jenkins, Clemson University

Resolve MFD – Manage Rumen pH

- Effective fiber
- Grain amount, kd, source
- Buffers
- Management
 - □TMR mixing
 - □ Crowding

W

Misconceptions About MFD

1.

2. I don't feed much fat so MFD should not be a problem!

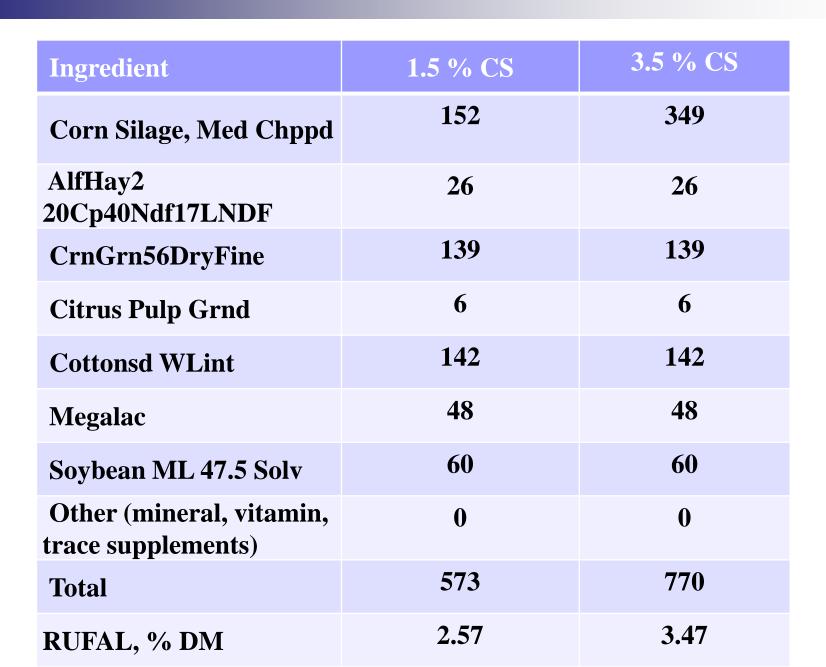
- 3. MFD is caused by inadequate rumen acetate when I don't feed enough fiber!
- 4. Our heat stress in the summer MFD more of a problem here than anywhere else in the country!
- 5. The way milk is priced in the Southeast means MFD is not a big problem!

Fatty Acid Sources

Ingredient	DMI, lb/d	RUFAL, g/d
Corn Silage, Med Chppd	21.95	
AlfHay2 20Cp40Ndf17LNDF	5.78	
CrnGrn56DryFine	9.34	
Citrus Pulp Grnd	1.03	
Cottonsd WLint	2.30	
Megalac	0.29	
Soybean ML 47.5 Solv	6.95	
Other (mineral, vitamin, trace supplements)	1.32	
Total	48.96	573
RUFAL, % DM Tom Jen	kins, Clemson University	2.57

Fatty Acid Sources

Ingredient	DMI, lb/d	RUFAL, g/d
Corn Silage, Med Chppd	21.95	152
AlfHay2 20Cp40Ndf17LNDF	5.78	26
CrnGrn56DryFine	9.34	139
Citrus Pulp Grnd	1.03	6
Cottonsd WLint	2.30	142
Megalac	0.29	48
Soybean ML 47.5 Solv	6.95	60
Other (mineral, vitamin, trace supplements)	1.32	0
Total	48.96	573
RUFAL, % DM		2.57


	Netherlands ¹		USA ²
FA, % DM	Grass Silage	Corn Silage	Corn Silage
Mean	1.9	2.0	2.5
Minimum	0.8	1.2	1.6
Maximum	3.3	3.5	3.6

¹Khan et al., 2012 Anim Feed Sci Tech. 174: 36-45

²Klein, Ploetz, Jenkins, & Lock.2013 ADSA Abstract #73

Ingredient	1.5 % CS	3.5 % CS
Corn Silage, Med Chppd	152	
AlfHay2 20Cp40Ndf17LNDF	26	
CrnGrn56DryFine	139	
Citrus Pulp Grnd	6	
Cottonsd WLint	142	
Megalac	48	
Soybean ML 47.5 Solv	60	
Other (mineral, vitamin, trace supplements)	0	
Total	573	
RUFAL, % DM	2.57	

M

Fatty Acids in Rye and Annual Ryegrass Pasture

Pasture	Planted	Grazed	Initial FA, % DM	Final FA, % DM
Rye	October	Nov 18- Mar 17	6.8	4.7
Annual ryegrass	October	Mar 17 – June 3	4.5	1.8

Freeman-Pounders et al. 2009. Forage and Grazinglands. doi: 10.1094/FG-2009-0130-01-BR.

Predicted vs. Actual Dietary Fat Contents

Farm	Wet Chem (% DM)	Model (% DM)	Actual Difference (% DM)	% Difference
1	6.7	5.5	1.2	17%
2	7.7	6.1	1.6	21%
3	6.9	5.3	1.6	23%
4	7.2	6.0	1.2	17%
5	6.0	5.0	1.0	17%
6	5.4	5.7	-0.3	-6%
7	5.3	5.3	-	-
8	5.3	5.8	-0.5	-9%

M

Misconceptions About MFD

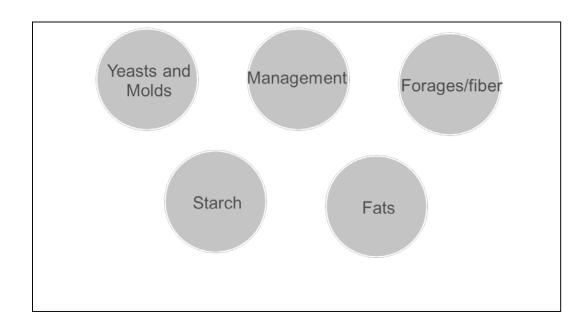
- 1. A single bad event caused my MFD- fix it and the problem goes away.
- 2. I don't feed much fat so MFD should not be a problem!
- 3. MFD is caused by inadequate rumen acetate when I don't feed enough fiber!
- 4. Our heat stress in the summer MFD more of a problem here than anywhere else in the country!
- 5. The way milk is priced in the Southeast means MFD is not a big problem!

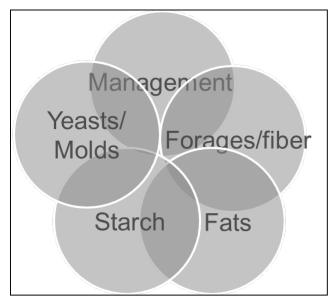
Higher Risk Corn Silage

High yeasts and molds. Alarms go off with yeast counts approaching 1 million cfu/g.

	ANALYTICAL SERVICES, INC. le, MD 21767 301-790-1980	April 16, 2009 Sample No : 8980042
CORN SILAGE	A N A L Y S I S R E S U L T S As Sampled Dry Matter	Unit
Moisture	73.7	%
Dry Matter	26.3	ે
Mold and Yeast Mold Count	counts are on an as-received basis	
Yeast Count	> 100,000,000 col/qm	
	,,,	

Too Much RUFAL (Unsaturated Fat)


5% Soybean Oil


	CON	SBO
Milk, kg/d	21.5	19.8
Milk Fat, kg/d	1.12	0.85*
Milk fat, %a	3.53	2.73*

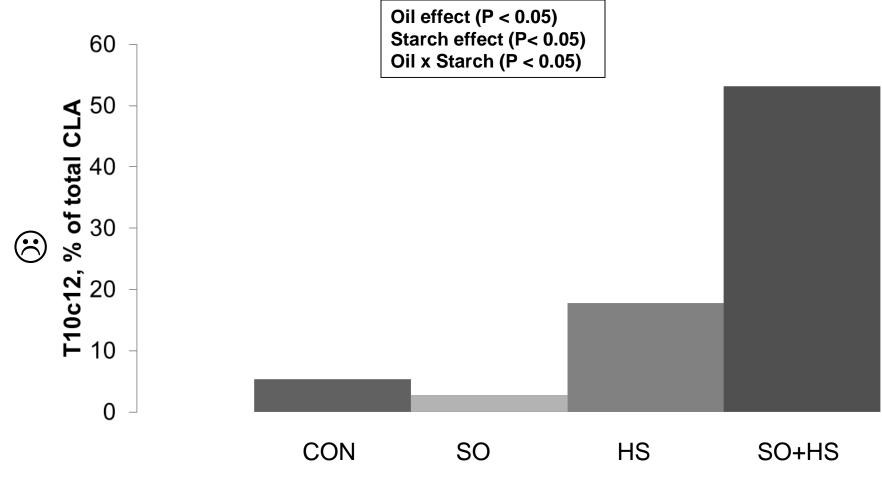
*CON and FAT diets differed (P < 0.05).

From Huang et al., 2008. J. Dairy Sci. 91:260–270.

Why Do I Still Sometimes Have MFD Problems Even When I Follow All The Proper Guidelines?

ZENED ET AL.

4 x 4 Latin Square 2 wk washout/2 week trt JDS 96:451-459, 2013.


Table 1. Ingredients and nutrient composition of diets

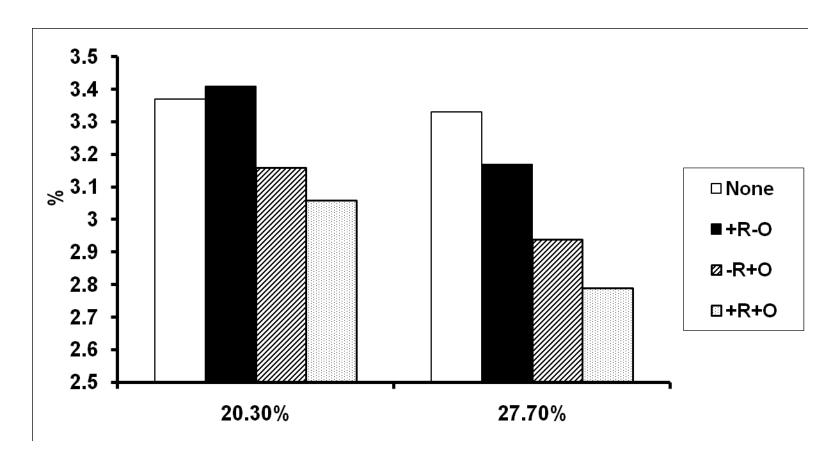
	Diet ¹				
Item	CON	OL	HS	HS+OL	
Ingredient, % of DM					
Corn silage	68.7	63.2	37.7	32.3	
Alfalfa hay	14.3	14.3	0.0	0.0	
Wheat + barley	0.0	0.0	48.5	48.5	
Soybean meal	15.5	16.2	12.4	13.1	
Sunflower oil	0.0	4.8	0.0	4.7	
Mineral-vitamin premix ²	1.5	1.5	1.5	1.5	
Composition, % of DM					
CP	14.6	14.6	14.2	14.2	
NDF	39.7	37.3	30.9	28.6	
Starch	21.5	19.8	34.8	33.1	
Crude fat	2.9	7.6	2.7	7.3	
FA composition, % of DM					
cis-9 C18:1	0.3	1.4	0.2	1.3	
cis-9, cis-12 C18:2	0.9	3.4	0.9	3.4	
cis-9, cis-12, cis-15 C18:3	0.1	0.1	0.1	0.1	

 $^{^{1}}$ CON = control diet; HS = high-starch diet; OL = sunflower oil diet; HS+OL = HS plus OL diet.

 $^{^2\}mathrm{Contained}$ (per kilogram of premix, DM basis) P: 40 g, Ca: 260 g, Mg: 50 g, Na: 20 g, Zn: 5 g, Mn: 4 g, Cu: 1 g, I: 40 mg, Co: 20 mg, Se: 20 mg, vitamin A: 450,000 IU, vitamin D₃: 100,000 IU, and vitamin E: 1,500 IU.

From Zened et al. 2013. JDS 96:451-459.

Tom Jenkins, Clemson University



Grain x Monensin x Fat Interactions – Cow Study

- 80 Holsteins
- 2 x 2 x 2 factorial design
 - Two starch levels (27.7 and 20.3% of TMR)
 - □ 0 vs 13 ppm Rumensin
 - □ 0 vs 1.25% corn oil

Van Amburgh et al., 2008. Cornell Nutr. Conf.

Milk Fat %

Van Amburgh et al., 2008. Cornell Nutr. Conf.

Tom Jenkins, Clemson University

Anything We Can Put in the Feed to Move Milk Fat Upward?

Palmitate (C16)¹ Effects on Milk Fat

	Milk Fat, %			
g added C16	- C16	+ C16	P <	Reference
412	3.44	3.93	0.05	Mosley et al. 2012
361	3.88	4.16	0.05	Lock et al., 2013
545	3.29	3.40	0.05	Piantoni et al, 2013
384	3.75	3.60	0.05	Warntges et al., 2008

¹All supplemented sources were > 85% C16.

	Milk Fat, %			
Δ TMR K	- K	+ K	P <	Reference
1.2 to 2.0%	4.01	4.38	0.05	Harrison et al. 2012
1.2 to 2.2 % (LF)	2.74	2.99	0.05	Kamar and Weiss, 2013
1.2 to 2.2 % (HF)	2.39	2.64	0.05	Kamar and Weiss, 2013
1.8 to 2.3%	4.06	4.28	0.05	Ma et al., 2013

¹Added as K carbonate sesquihydrate (DCAD Plus, C&D, Inc.)

Thank You!!!