

~ 60% of AMU in dairy production is for control or treatment of mastitis

- ~2/3 of that 60% is for dry cow therapy
- ~6 FDA approved DCT formulations
 - No meaningful differences in bioeconomic health and production outcomes

J. Dairy Sci. 99:593-607 http://dx.doi.org/10.3168/jds.2015-10190

© 2016, THE AUTHORS. Published by FASS and Elsevier Inc. on behalf of the American Dairy Science Association[®]. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

Randomized noninferiority study evaluating the efficacy of 2 commercial dry cow mastitis formulations

A. P. Johnson,* S. M. Godden,† E. Royster,† S. Zuidhof,‡ B. Miller,‡ and J. Sorg†

*The Udder Doctor, Seymour, WI 54165 †Department of Veterinary Population Medicine, University of Minnesota, Saint Paul 55108 ‡Boehringer Ingelheim Vetmedica Inc., St. Joseph, MO 64506

J. Dairy Sci. 96:6390–6399 http://dx.doi.org/10.3168/jds.2013-6705 © American Dairy Science Association®, 2013.

Randomized noninferiority clinical trial evaluating 3 commercial dry cow mastitis preparations: II. Cow health and performance in early lactation

A. G. Arruda,* S. Godden,*¹ P. Rapnicki,* P. Gorden,† L. Timms,† S. S. Aly,‡§ T. W. Lehenbauer,‡§ and J. Champagne‡§

*Department of Veterinary Population Medicine, University of Minnesota, Saint Paul 55108 †Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames 50011 ‡Veterinary Medicine Teaching and Research Center, Tulare 93274 §Department of Population Health and Reproduction, University of California, Davis 95616

2/3 of that 60% is for Dry Cow Therapy

FDA-Approved Drugs for Intramammary Use

Non-Lactating Cattle**

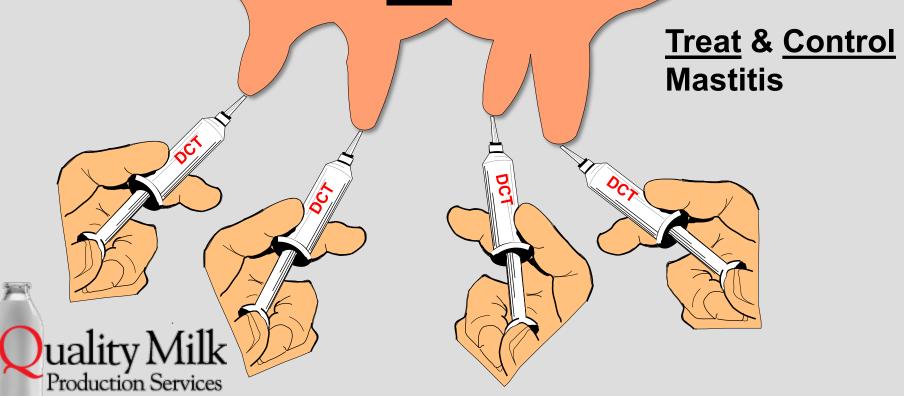
Active Ingredient	Drug Type	Milk Withholding Time	Meat Withholding Time	Product Name	Manufacturer/Marketer
Ceftiofur hydrochloride	Rx	None*	16 days	SPECTRAMASTTM DC	Zoetis, Inc.
Cephapirin (benzathine)	OTC	72 hours	42 days	Tomorrow Infusion	Boehringer Ingelheim Vetmedica, Inc.
Cloxacillin (benzathine)	Rx	None	30 days	Dry-Clox®	Boehringer Ingelheim Vetmedica, Inc.
	Rx	None*	28 days	Orbenin-DC®	Merck Animal Health
Penicillin G (procaine)	ОТС	72 hours post-calving	14 days	Hanford's/US Vet go-dry™	G.C. Hanford Mfg. Co.
Penicillin G (procaine) / dihydrostreptomycin	Rx	96 hours post-calving	60 days	Quartermaster® Dry Cow	Treatment West Agro Inc.
Penicillin G (procaine) / Novobiocin	ОТС	72 hours post-calving	30 days	AlbaDry® Plus Suspension	Zoetis, Inc.

Shouldn't be a complicated discussion...

Non-inferiority studies

- No meaningful differences in bioeconomic health and production outcomes:
 - Quartermaster v. Spectramast DC v. Tomorrow

Arruda, A.G., S. Godden, P. Rapnicki, P. Gorden, L. Timms, S.S. Aly, T.W. Lehenbauer, and J. Champagne. 2013a. Randomized noninferiority clinical trial evaluating 3 commercial dry cow mastitis preparations: I. Quarter-level outcomes. J. Dairy Sci. 96:4419-4435.


Arruda, A.G., S. Godden, P. Rapnicki, P. Gorden, L. Timms, S.S. Aly, T.W. Lehenbauer, and J. Champagne. 2013b. Randomized noninferiority clinical trial evaluating 3 commercial dry cow mastitis preparations: II. Cow health and performance in early lactation. J. Dairy Sci. 96: 6390-9.

Dry-Clox v. Spectramast DC

Johnson AP, Godden SM, Royster E, Zuidhof S, Miller B, Sorg J. 2016. Randomized noninferiority study evaluating the efficacy of 2 commercial dry cow mastitis formulations. J Dairy Sci. Jan;99(1):593-607

1960s "Blanket DCT"

Treat <u>all</u> 4 quarters of <u>all</u> cows

Blanket Dry Cow Therapy (BDCT)

5 Point Plan

- Treat and record clinical mastitis cases
- 2. Post milking teat disinfection
- 3. Dry cow therapy
- 4. Cull chronic cases
- 5. Milking machine maintenance

National Mastitis Council Recommended Mastitis Control Program

From Hillerton, Proceedings NMC 2018

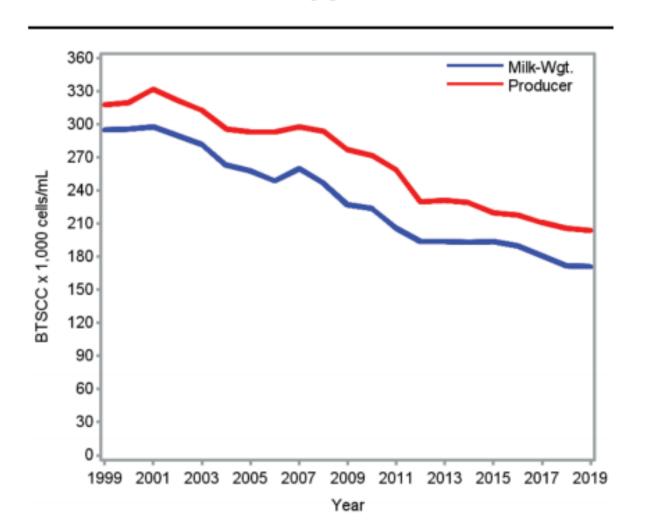
Figure 5. The first publication of the Five-point plan, from the summer 1970 MMB Better Management, page 8.

Antimicrobial Dry cow therapy (aDCT)

G.2.b. Percentage of cows treated with dry-cow IMM antimicrobials at dry-off, by herd size and by region:

Percent Cows

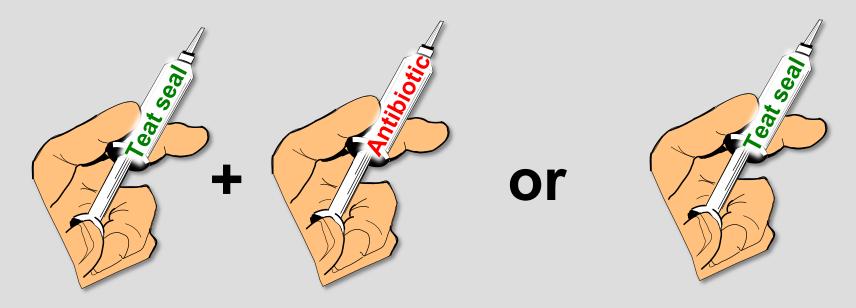
(11111111111111111111111111111111111111											
Small Medium		La	rge					Δ	AII		
(30-	-99)	(100-	- 499)	(50	0+)	W	est	E	ast	opera	ations
	Std.		Std.		Std.		Std.		Std.		Std.
Pct.	error	Pct.	error	Pct.	error	Pct.	error	Pct.	error	Pct.	error
81.9	(4.5)	82.6	(4.6)	96.4	(1.6)	94.3	(2.7)	91.9	(1.8)	93.0	(1.6)


Herd size (number of cows)

Region

BDCT was awesome when:

- average dry cow infected or likely to acquire a new infection
- high prevalence of "contagious" pathogens


Figure 5. Milk-weighted and producer BTSCCs for the four monitored FMMOs, by year

1985: ~45% of quarters = negative culture result

Today: 75-90% of quarters = negative culture result

Summary: Teat sealants

New IMI reduced by 25% (RR = 0.75) **Clinical mastitis** reduced by 29% (RR = 0.71)

↓new IMI at calving & Clinical mastitis

Randomized equivalence study comparing the efficacy of 2 commercial internal teat sealants in dairy cows

S. M. Rowe,¹* S. M. Godden,¹ D. V. Nydam,² A. Lago,³ A. K. Vasquez,² E. Royster,¹ and J. Timmerman¹

¹Department of Veterinary Population Medicine, University of Minnesota, St. Paul 55108

³Research and Development Department, DairyExperts, 1814 Rothschild Street, Tulare, CA 93274

Conclusion

- Lockout® is likely to perform similarly to Orbeseal® when used in a blanket dry cow therapy program
 - Reduce new intramammary infection
 - Reduce clinical mastitis
 - Reduce SCC

²Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853

A randomized equivalence study evaluating the efficacy of two commercially available teat sealants in dairy cows

Michelle P. Buckley, MS, DVM; **Jenna Bayne, DVM; Tiago Tomazi, DVM, MS, PhD; Brian E. Miller, DVM; Sandra M. Godden, DVM, DVSc; Gustavo S. Silva, DVM, MS, PhD; *Patrick J. Gorden, DVM, PhD

¹Department of Veterinary Microbiology and Preventative Medicine, Iowa State University, Ames, IA 50011
 ²Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA 50011
 ³Dairy Technical Services, Merck Animal Health, Lenexa, KS 66219
 ⁴Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN 55108

No meaningful differences in bioeconomic health and production outcomes

ELSEVIER

Contents lists available at ScienceDirect

Preventive Veterinary Medicine

Evaluating the efficacy of internal teat sealants at dry-off for the prevention of new intra-mammary infections during the dry-period or clinical mastitis during early lactation in dairy cows: A systematic review update and sequential meta-analysis

S.D. Pearce ^{a, *}, E.J. Parmley ^a, C.B. Winder ^a, J.M. Sargeant ^a, M. Prashad ^b, M. Ringelberg ^a, M. Felker ^a, D.F. Kelton ^a

"Based on all the evidence available, sufficient research exists for practical use, and cessation of future research until substantial changes to Teat Sealant application occurs"

Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada

b Data Resource Centre, University of Guelph, Guelph, ON N1G 2W1, Canada

Selective Dry Cow Therapy for Treatment and Control of Mastitis Why do this?

Make More Money while not compromising animal health

- Save money on tubes (and maybe labor)
- Decrease risk of residues
- Bogey man
 - > Someone tells you that you have to
 - > Mitigate risk of antimicrobial resistance
- ➤ (Sell more milk?)

STATE OF NEW YORK

5742--A

2019-2020 Regular Sessions

IN SENATE

May 14, 2019

Introduced by Sens. KAVANAGH, HOYLMAN -- read twice and ordered printed, and when printed to be committed to the Committee on Higher Education -- committee discharged, bill amended, ordered reprinted as amended and recommitted to said committee

AN ACT to amend the education law and the state finance law, in relation to protecting medically important antimicrobials for human public health

The People of the State of New York, represented in Senate and Assembly, do enact as follows:

- 1 Section 1. Legislative findings. The legislature declares that the
- 2 overuse and misuse of medically important antimicrobials poses a serious
- 3 public health threat.

AMERICAN ASSOCIATION OF BOVINE PRACTITIONERS

Senator Brian Kavanagh Legislative Office Building Room 512 Albany, NY 12247

The American Association of Bovine Practitioners (AABP) is an association of cattle veterinarians serving society as leaders in cattle health, welfare and productivity. Our organization of more than 5,000 members represents cattle veterinarians primarily in the U.S. and Canada with members also in 34 countries. AABP has 193 member veterinarians in New York.

I am writing to oppose S. 5742 for the specific reasons that are outlined in this letter.

Similar legislation passed or proposed in Maryland, Illinois, Oregon, California

Selective Dry Cow Therapy (SDCT)

Why is it important to consider if your dairy is a good candidate for SDCT?

Legislation is likely to enforce selective use of dry cow antibiotics one day.

Example #2

 European Union Jan 2022: banned prophylactic use of antibiotics on farms (44) Antimicrobial medicinal products should not be used for prophylaxis other than in exceptional cases only for the administration to an individual animal.

(16)

'prophylaxis' means the administration of a medicinal product to an animal or group of animals before clinical signs of a disease, in order to prevent the occurrence of disease or infection;

AABP 2022 9/24/2022

Selective Dry Cow Therapy (SDCT)

Identifying and treating ONLY cows/quarters that currently have or are at risk for infections

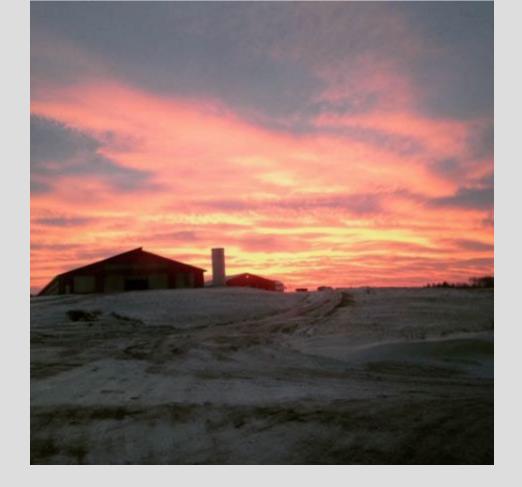
Which cows/quarters to treat?

NEEDS: accurate, quick, cheap

Currently available tools for identifying cows:

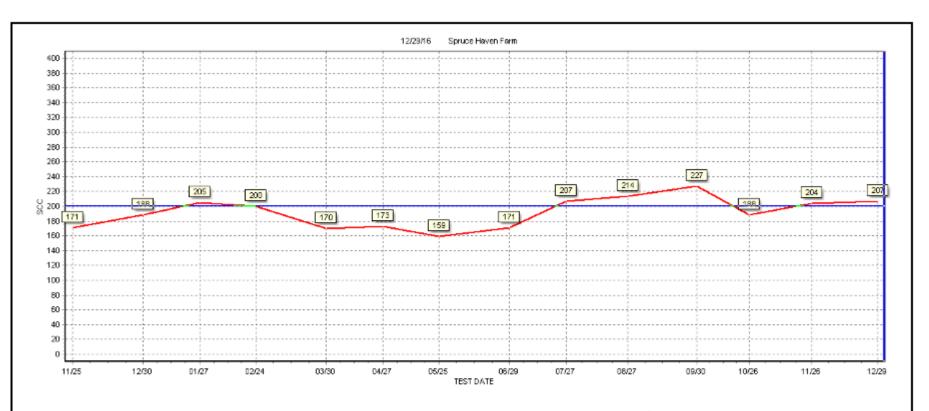
The question?

If an on-farm algorithm was used to identify and not treat "low risk" cows, would the cows experience negative outcomes?

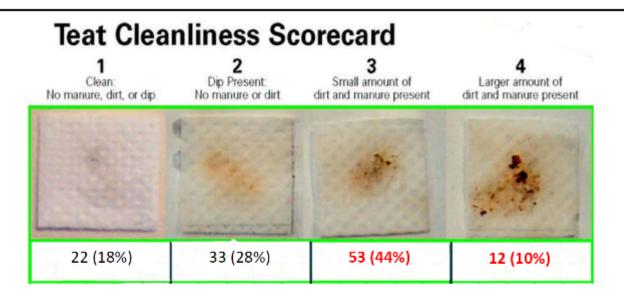


Use of a culture-independent on-farm algorithm to guide the use of selective dry-cow antibiotic therapy

A. K. Vasquez,* D. V. Nydam,*¹ C. Foditsch,* M. Wieland,* R. Lynch,† S. Eicker,‡ and P. D. Virkler*
*Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, and
†Pro-Dairy, Department of Animal Science, Cornell University, Ithaca, NY 14853
‡Valley Agricultural Software, King Ferry, NY 13081



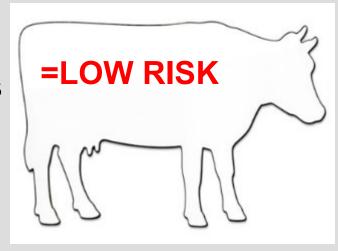
- NY
- 1800 milking cows
- DHIA testing
- Dry once per week

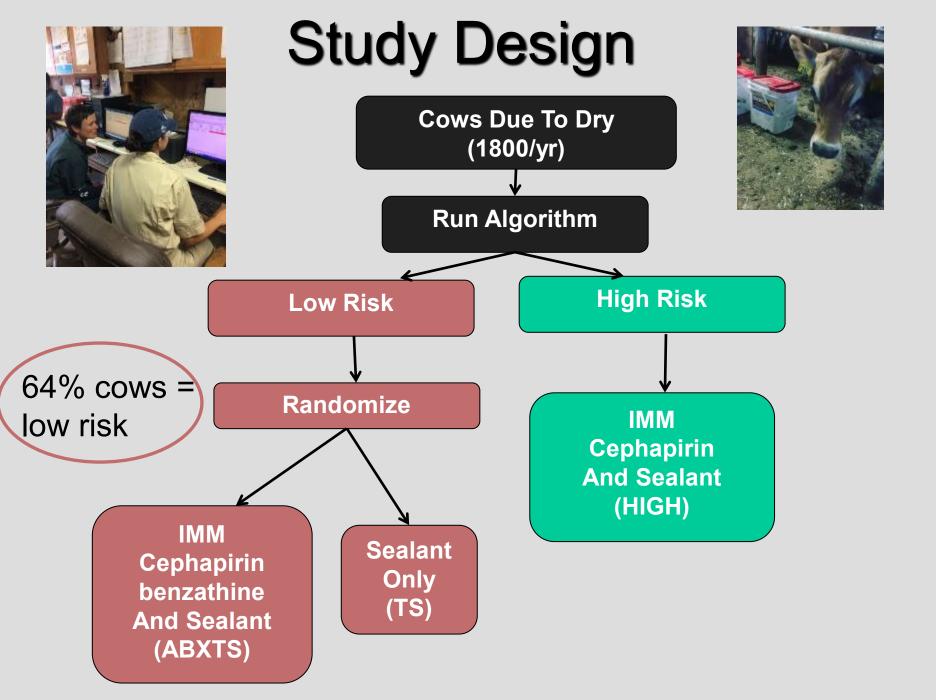


BT SCC during trial 171 k - 227 k

 Bulk tank test day SCC remained in a similar range for the December test day.

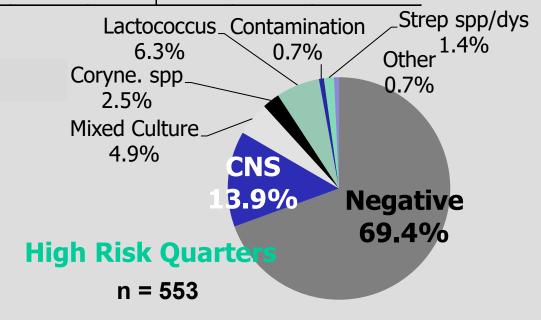
A good herd, but not the best...


- <u>54% of the teat ends that we scored were too dirty</u>. This is still a large opportunity area to improve as the goal would be to have less than 10% in category 3 or 4. The number of cows with poor teat ends is not making it easy for the milkers but they should be able to get much closer to the goal with the proper technique.
- I would recommend that you start scoring teat end cleanliness by milker on a regular basis and include a refresher on this topic in your next milker training session.



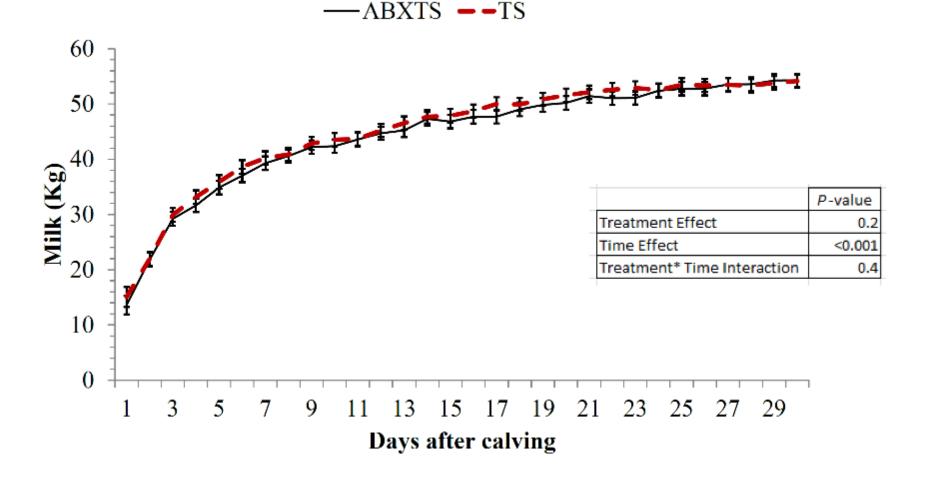
Computer Algorithm

- Last test SCC ≤ 200k
- Avg SCC last 3 test-days ≤200k
- ≤1 case of clinical mastitis
- No current symptoms of clinical mastitis
- No mastitis in the last 30 days


There were similar numbers of cows and quarters in each treatment group

	ABXTS	TS	Total
Cows	304	307	611
Quarters	1040	1058	2098
Percentage	50%	50%	

Pre "treatment" quarter-level culture results at dry-off


	Treatment Group				
	Teat Se	alant	Antibiot		
	(n = 1204)		Teat Sealant		
	(n = 118)		B) P-value		
	<u>n</u>	<u>%</u>	<u>n</u>	<u>%</u>	
Negative	1086	90.2	1064	90.0	0.84
Coagulase negative Staphylococcus spp.	59	4.9	78	6.6	0.08
Mixed Growth	22	1.8	20	1.7	0.88
Corynebacterium spp.	24	2.0	12	1.0	0.06
Lactococcus spp.	5	0.4	4	0.3	> 99.99
Streptococcus spp.	2	0.2	1	0.1	> 99.99
Other	6	0.5	4	0.3	0.75
Total intramammary infections	114	9.5	115	9.7	0.84

Results



Milk yield over the first 30 days was similar between groups

Summary:

1. Bacteriological Cure

= YES

2. New Infection Risk

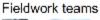
= NO

3 & 4. First test milk production and linear score (LS) = NO

5. Risk of survival and mastitis 30 days = NO

Randomized controlled non-inferiority trial investigating the effect of 2 selective dry-cow therapy protocols on antibiotic use at dry-off and dry period intramammary infection dynamics

S. M. Rowe, ¹* [©] S. M. Godden, ¹ [©] D. V. Nydam, ² [©] P. J. Gorden, ³ [©] A. Lago, ⁴ [©] A. K. Vasquez, ² [©] E. Royster, ¹ [©] J. Timmerman, ¹ and M. J. Thomas ⁵ [©]


Department of Veterinary Population Medicine, University of Minnesota, St. Paul 55108

Acknowledgements

In-kind support

J. Dairy Sci. 103:6493–6503 https://doi.org/10.3168/jds.2019-17961 © American Dairy Science Association®, 2020.

Randomized controlled trial investigating the effect of 2 selective dry-cow therapy protocols on udder health and performance in the subsequent lactation

S. M. Rowe, 1* 5 S. M. Godden, 1 D. V. Nydam, 2 P. J. Gorden, 3 A. Lago, 4 A. K. Vasquez, 2 E. Royster, 1 J. Timmerman, 1 and M. J. Thomas 5

¹Department of Veterinary Population Medicine, University of Minnesota, St. Paul 55108

²Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853

³Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames 50011

DairyExperts, Tulare, CA 93274

⁵Dairy Health & Management Services, Lowville, NY 13367

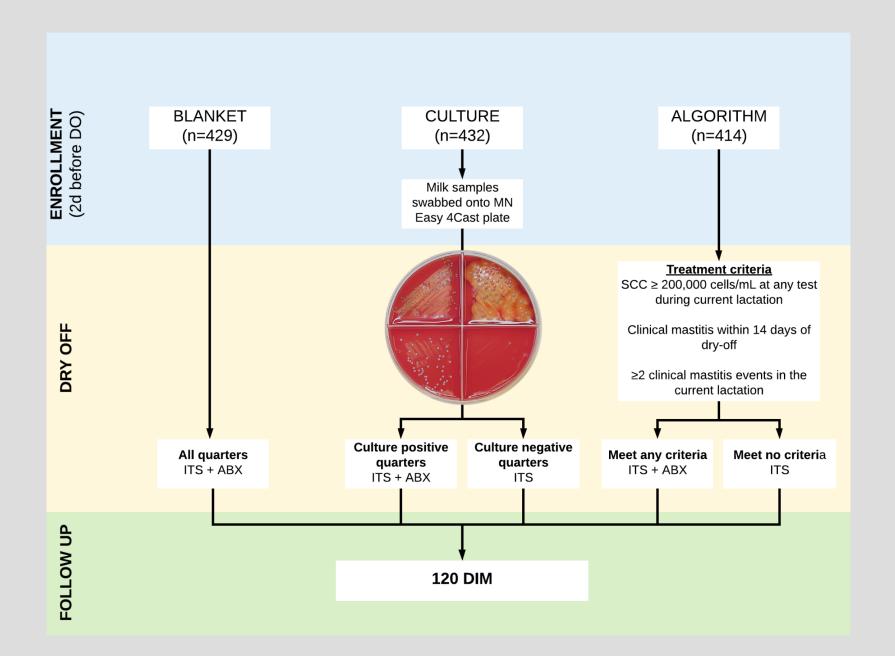
²Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853

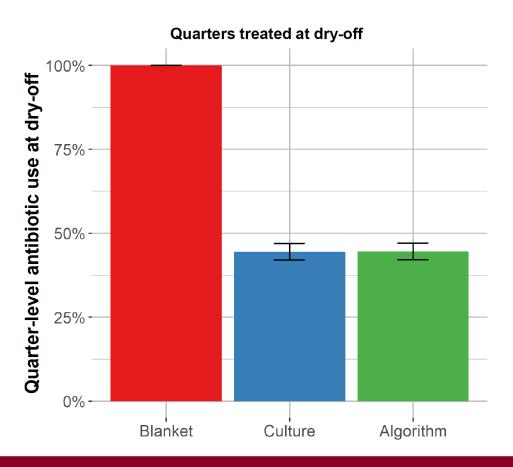
Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames 50011
 Research and Development Department, DairyExperts, Tulare, CA 93274

Dairy Health and Management Services, Lowville, NY 13367

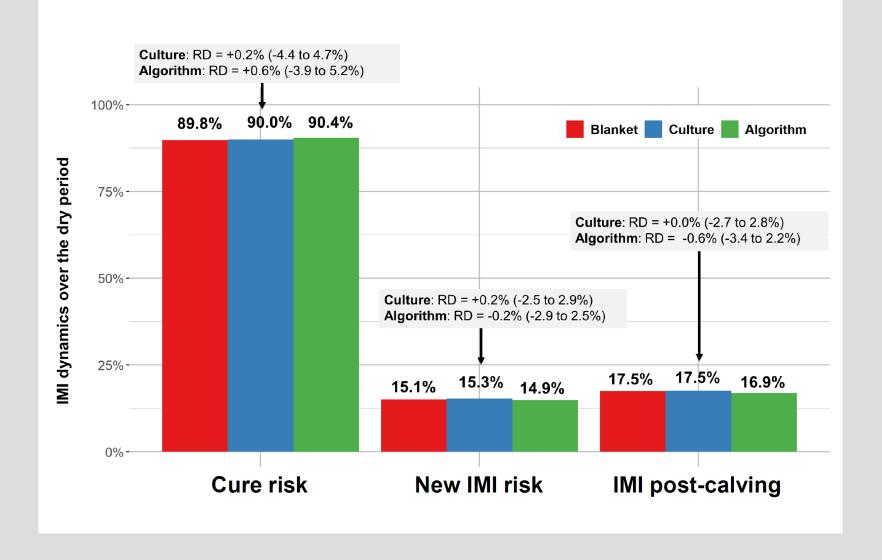
Study type

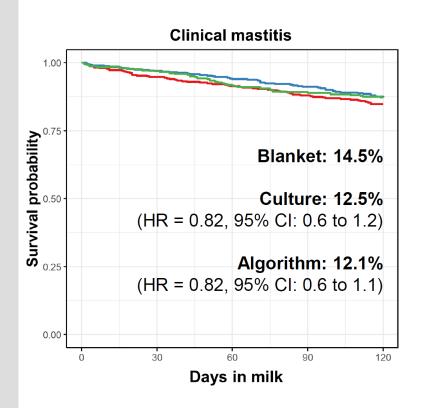
- Randomized controlled trial
- Enrollment
 - Summer 2018
 - 7 herds from 4 sites
 - 1275 cows randomly assigned
 - Blanket DCT (n = 429)
 - Culture based SDCT (n = 432)
 - Algorithm based SDCT (n = 414)

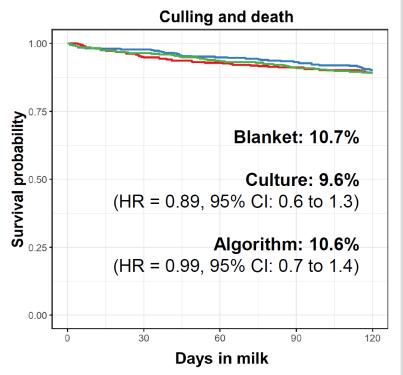



Herds

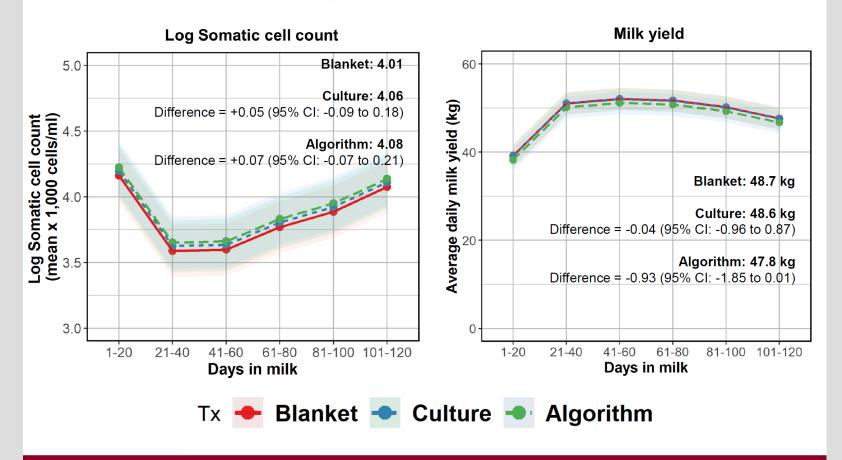
Houd	Milking	DISCO	Dry cow hodding	Lastating saw hadding	Vov
Herd	herd	BTSCC	Dry cow bedding	Lactating cow bedding	Vax
Α	850	200	Sand	Sand	J-vac
В	1150	100	Sand	Sand	J-vac
С	1500	150	Sand	Sand / Compost pack	Enviracore
D	5700	230	Manure solids (dry lot)	Manure solids (Freestall)	J-vac
Е	3600	220	Manure solids (dry lot)	Manure solids (Freestall)	J-vac
F	950	110	Compost pack	Manure solids (Freestall)	Enviracore
G	1750	90	Sand	Sand	Endovac bovi




Antibiotic use was reduced by 55%



Quarter-level outcomes were similar


SDCT had similar effects on health (1 – 120 DIM)

Blanket — Culture — Algorithm

SDCT had similar effects on milk production and quality from 1 – 120 DIM

Conclusions

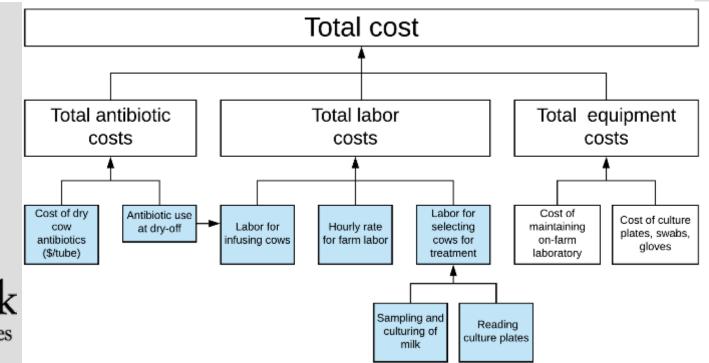
- Selective DCT is an important opportunity we have to reduce antibiotic use on dairy farms
- In our study, Culture and Algorithm protocols reduced antibiotic use by 55% without any negative effects on health and productivity
- Selective DCT should be carefully implemented, under the supervision of a veterinarian

Minnesota Easy™ 4Cast® plate

Partial budget analysis of culture- and algorithm-guided selective dry cow therapy

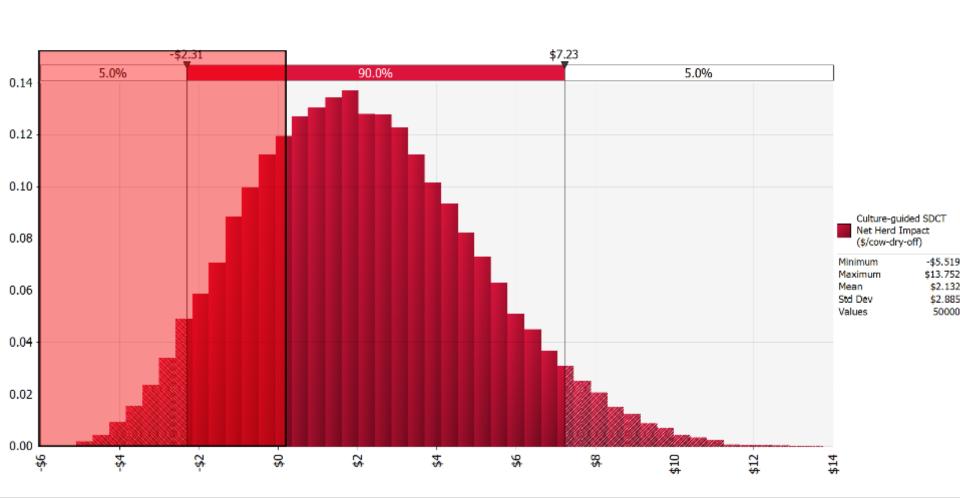
S. M. Rowe, 1,2 to D. V. Nydam, 0 S. M. Godden, 0 P. J. Gorden, 0 A. Lago, 0 A. K. Vasquez, 0 E. Royster, 0 J. Timmerman, M. J. Thomas, 6 and R. A. Lynch 6 Department of Veterinary Population Medicine, University of Minnesota, St. Paul 55108

²Faculty of Science, Sydney School of Veterinary Science, The University of Sydney, Camden, New South Wales 2570, Australia

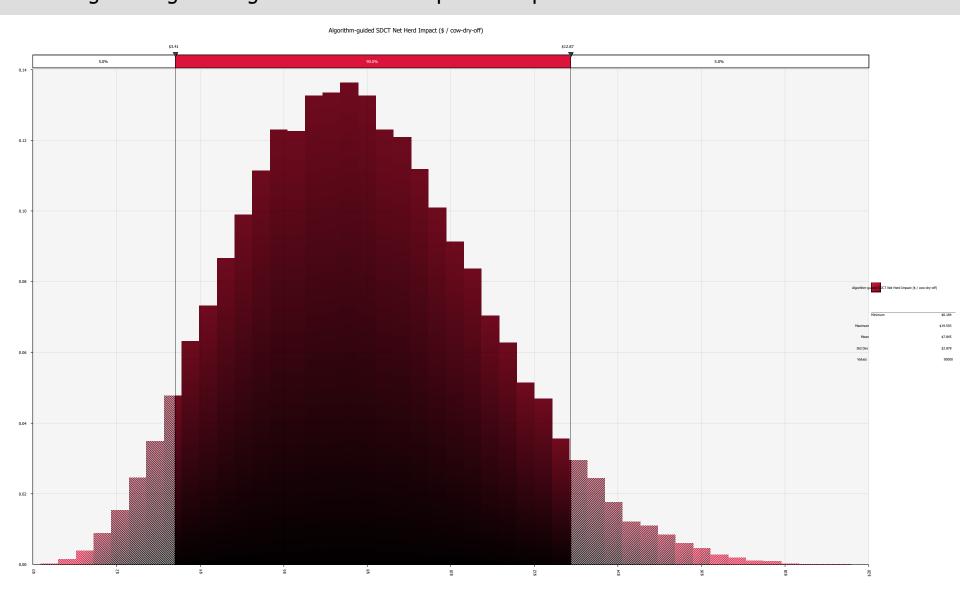

³Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853

Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames 50011

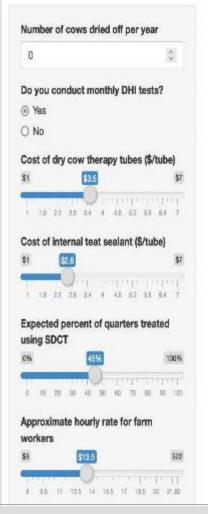
DairyExperts, Tulare, CA 93274


⁶Dairy Health & Management Services, Lowville, NY 13367

Pro-Dairy, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853



Culture-guided SDCT


Relative frequency graph showing 50,000 iterations for the herd net economic impact of <u>algorithm-guided</u> SDCT (\$ / cow-dry-off). The <u>mean herd net economic impact was \$7.85</u>, indicating that on average, a herd switching from BDCT to algorithm-guided SDCT could expect to save \$7.85 per cow-dry-off. 100% of iterations had a net economic impact of \$0.00 or greater, indicating that algorithm-guided SDCT was a profitable practice in all herd conditions evaluated

https://dairyknow.umn.edu/research/udder-health/selective-dry-cow-therapy-cost-calculator/

Selective Dry Cow Therapy Cost Calculator

Enter your information below to compare the cost of dry cow therapy strategies in your herd

Cost (\$) of each dry cow therapy approach 30 \$25.08 \$22.78 Cost_Type Disposite Late: Unitable Unitable

Culture SDCT

Culture-guided selective DCT will cost \$2.30 LESS per dry-off than blanket DCT. The estimated annual cash impact on your farm is +\$0.00

Algorithm SDCT

Algorithm-guided selective DCT will cost \$7.82 LESS per dry-off than blanket DCT. The estimated annual cash impact on your farm is +\$0.00

SDCT: What herds?

- Veterinarian of record involvement
 - Constitutes prescribing
- Bulk tank SCC <250,000
- Limited "contagious pathogens"
 - No Strep ag, little Staph aureus
- Good herd records
- Ability to implement new management
- Mastitis pathogen surveillance

Dry-off routine should not introduce mastitis

- How are cows sorted and held prior to dry-off?
- Dried-off after last milking of lactation?
 - Ensure units and deck have not accumulated "debris"
- Check IDs and work list; leg bands
- Teat end cleanliness; far to near with alcohol
- Hygienic insertion of Abx and Teat sealant; near to far

Controlling the Dry-Off Procedure on Your Dairies – Getting Involved, Monitoring, and Training for Improvement

Wolfgang Heuwieser, DVM
Valeria Gallardo, DVM
Michael Zurakowski, DVM
Rachel Moody, MS
Paul Virkler, DVM
Quality Milk Production Services
607-229-5985 (Paul)
pdv3@cornell.edu

Phase 1 Module Design

Access by QR code

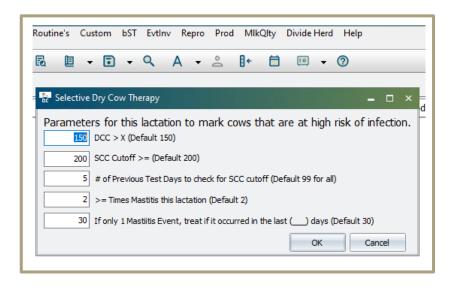
Or directly to: https://dairyroutines.jimdo.com/

Supporting The Implementation and Monitoring of Selective Dry Cow Therapy (SDCT) on NY State Dairy Farms

Amber Forrestal, DVM, QMPS, Perry Veterinary Clinic AABP 9/24/2022

- Tracy Potter, DVM, QMPS, Perry Veterinary Clinic
- Daryl Nydam, DVM, PhD, Cornell University
- •Michael Capel, DVM, Perry Veterinary Clinic

Cow Selection Criteria



All farms algorithm-based (vs. culture, CMT)

DairyComp305 SDCT Algorithm High Risk Cows


- SCC ≥ 200 any test day through lactation
- ≥ 2 mastitis events
- If 1 mast event, must be > 30 days before dry off
- Dry off list populated with Y or N

https://vas.com/blog/2022/01/07/how-to-set-up-selective-dry-cowtherapy-with-dairycomp/

Enable SDCT Option in ECON

- ECON\SDCT

Herd Demographics: 24 farms enrolled

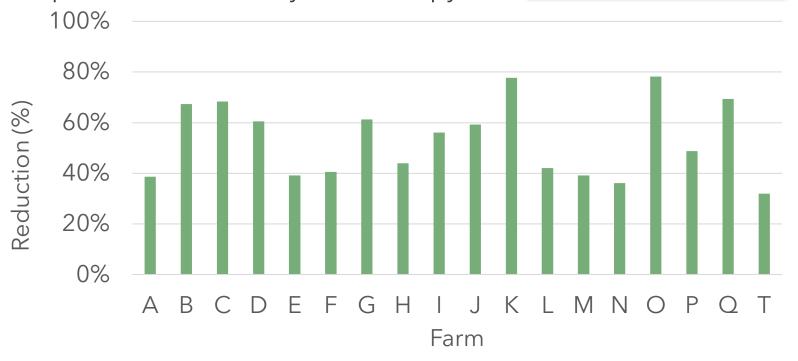
Herd size range: 65 - 3,774 mature cows (avg. 985)

Robot dairies: 4 farms

Tie stall dairies: 2 farms

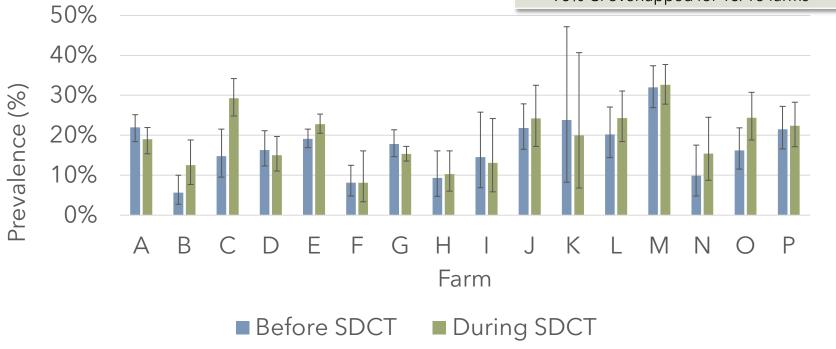
DHI testing: 18 farms

DairyComp 305: 21 farms


DairyComp305 SDCT Algorithm: 14 farms

All using teat sealant at dry off

Reduction in antibiotic use at dry-ofcompared to blanket dry cow therapy

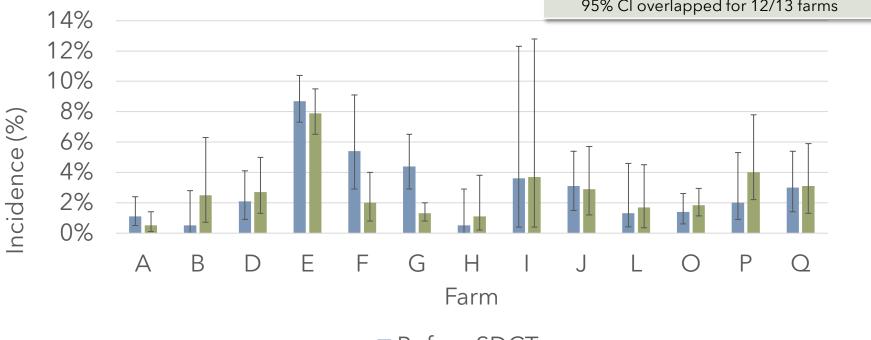

Average

53% (32-78%)

Average monthly prevalence of cows with a high (≥200k cells/mL) first SCC test

Average	
Before SDCT	During SDCT
17% (5.6-32%)	19%(8.1-33%)
95% CI overlapped for 15/16 farms	

Fresh cow mastitis incidence before and during SDCT



Average

Before SDCT During SDCT

2.9% (0.5-8.7%) 2.7%(0.5-7.9%)

95% Cl overlapped for 12/13 farms

■ Before SDCT

Summary

- SDCT was implemented in various farms of different sizes across NY state, and an algorithm was used to determine high risk and low risk cows.
- Results show that SDCT be implemented **in the right herd** without decreasing herd health.

- Excellent hygiene during the dry-off procedure
- Appropriate use of teat sealants (internal > external > nothing)

Antibiotic use reduced by average of 53% across all herds.

- 4,851 cows not treated with antibiotics
- = 19,404 dry cow tubes
- ~\$60,000 not spent on dry cow tubes

J. Dairy Sci. 105:7161–7189 https://doi.org/10.3168/jds.2021-21455

© 2022, The Authors. Published by Elsevier Inc. and Fass Inc. on behalf of the American Dairy Science Association®.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Invited review: Selective use of antimicrobials in dairy cattle at drying-off

Kayley D. McCubbin, 1,2 Ellen de Jong, 1,2 Theo J. G. M. Lam, 3 David F. Kelton, 4 John R. Middleton, 5 Cott McDougall, 6,7 Sarne De Vliegher, 8 Sandra Godden, 9 Päivi J. Rajala-Schultz, 10 Sam Rowe, 11 David C. Speksnijder, 12,13 John P. Kastelic, 1 and Herman W. Barkema 1,2 B

CONCLUSIONS

Although described selection protocols and results differed, common themes emerged that present a positive argument in favor of SDCT. Producers should be provided with SDCT protocol options that reflect their access to data as the basis of antimicrobial treatment decision-making, as well as their motivation to choose one method over another. Further, sufficient evidence supports that TSL should be included as an integral part of an SDCT protocol (Winder et al., 2019b; Kabera et al., 2021). If SDCT recommendations are practical and based on producer situations, uptake will likely increase. Furthermore, ongoing producer and veterinary education is essential to increase antimicrobial stewardship in the dairy industry (Farrell et al., 2021) and increased personal responsibility in AMR mitigation is required to promote the required behavior change (Fishbein and Cappella, 2006). In addition, proper evaluation mechanisms should be in place to evaluate impacts of introduced SDCT protocols. In summary, SDCT protocols can be enacted in countries with developed dairy industries without negative udder health and production impacts and will substantially reduce DCT-associated AMU, potentially reducing the

"... SDCT protocols can be enacted in countries wit developed dairy industries without negative udder health and production impacts..."

What did the 2 cows do when they met?

They gave each other a milk shake!

